ترغب بنشر مسار تعليمي؟ اضغط هنا

Z_4 flavor model in Randall-Sundrum model 1

170   0   0.0 ( 0 )
 نشر من قبل Alfredo Aranda
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Randall Sundrum models provide a possible explanation of (gauge-gravity) hierarchy, whereas discrete symmetry flavor groups yield a possible description of the texture of Standard Model fermion masses. We use both these ingredients to propose a five-dimensional extension of the Standard Model where the mass hierarchy of the four-dimensional effective field theory is obtained only using localizations parameters of order 1. We consider a bulk custodial gauge symmetry group together with an Abelian $Z_4$ group: the model turns out to yield a rather minimal extension of the SM as it only requires two brane Higgs fields to provide the desired Yukawa interactions and the required spontaneous symmetry breaking pattern. In fact, the presence of an extra-dimension allows the use of the Scherk-Schwarz mechanism to contribute to the breaking of the bulk custodial group down to the SM gauge symmetry. Moreover, no right-handed neutrinos are present and neutrino masses are generated radiatively with the help of a bulk charged scalar field that provides the Lepton-number violation. Using experimental inputs from the Global Neutrino Analysis and recent Daya Bay results, a numerical analysis is performed and allowed parameter regions are displayed.



قيم البحث

اقرأ أيضاً

We present a variant of the warped extra dimension, Randall-Sundrum (RS), framework which is based on five dimensional (5D) minimal flavor violation (MFV), in which the only sources of flavor breaking are two 5D anarchic Yukawa matrices. The Yukawa m atrices also control the bulk masses, which are responsible for the resulting flavor structure and mass hierarchy in the low energy theory. An interesting result of this set-up is that at low energies the theory flows to next to MFV model where flavor violation is dominantly coming from the third generation. Low energy flavor violation is further suppressed by a single parameter that dials the amount of violation in the up or down sector. There is therefore a sharp limit in which there is no flavor violation in the down type quark sector which, remarkably, is favored when we fit for the flavor parameters. This mechanism is used to eliminate the current RS flavor and CP problem even with a Kaluza-Klein scale as low as 2 TeV! Our construction also suggests that economic supersymmetric and non-supersymmetric, strong dynamic-based, flavor models may be built based on the same concepts.
We present a Randall-Sundrum toy model with an added scalar singlet that couples only to KK fermions in the bulk. Such a scalar would nontrivially affect radion phenomenology. In addition, we examine the radion phenomenology in light of the new scala r and show how this scalar could present another probe to search for the radion.
We propose a simple and predictive model of fermion masses and mixing in a warped extra dimension, with the smallest discrete non-Abelian group $S_{3}$ and the discrete symmetries $Z_{2}otimes Z_{4}$. Standard Model fields propagate in the bulk and t he mass hierarchies and mixing angles are accounted for the fermion zero modes localization profiles, similarly to the the Randall-Sundrum (RS) model. To the best of our knowledge, this model is the first implementation of an $S_{3}$ flavor symmetry in this type of warped extra dimension framework. Our model successfully describes the fermion masses and mixing pattern and is consistent with the current low energy fermion flavor data. The discrete flavor symmetry in our model leads to predictive mixing inspired textures, where the Cabbibo mixing arises from the down type quark sector whereas up type quark sector contributes to the remaining mixing angles.
Observational evidence for dark matter stems from its gravitational interactions, and as of yet there has been no evidence for dark matter interacting via other means. We examine models where dark matter interactions are purely gravitational in a Ran dall-Sundrum background. In particular, the Kaluza-Klein tower of gravitons which result from the warped fifth dimension can provide viable annihilation channels into Standard Model final states, and we find that we can achieve values of the annihilation cross section, $left< sigma v right>$, which are consistent with the observed relic abundance in the case of spin-1 dark matter. We examine constraints on these models employing both the current photon line and continuum indirect dark matter searches, and assess the prospects of hunting for the signals of such models in future direct and indirect detection experiments.
191 - Bei Jia , Xi-Guo Lee 2007
We study a mechanism, inspired from the mechanism for generating the gauge hierarchy in Randall-Sundrum model, to investigate the cosmological constant problem. First we analyze the bulk cosmological constant and brane vacuum energies in RS model. We show that the five-dimensional bulk cosmological constant and the vacuum energies of the two branes all obtain their natural values. Finally we argue how we can generate a small four-dimensional effective cosmological constant on the branes through modifying the original RS model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا