ﻻ يوجد ملخص باللغة العربية
The nature of the phase transitions in La$_{1-x}$Ca$_x$MnO$_3$ and Pr$_{0.48}$Ca$_{0.52}$MnO$_3$ has been probed using heat capacity and magnetisation measurements. The phase transition associated with the onset of the stripe phase has been identified as second order. The model of a Peierls transition in a disordered system (a `dirty Peierls transition) is shown to provide an extremely good fit to this transition. In addition, an unexpected magnetic phase has been revealed in low temperature Pr$_{0.48}$Ca$_{0.52}$MnO$_3$, associated with an excess heat capacity over a wide temperature range compared to La$_{1-x}$Ca$_x$MnO$_3$.
We point out that a recent model for the heat capacity of alpha-U that invokes CDW collective modes is unphysical. We show instead that the features in the heat capacity of both single-crystal and polycrystalline alpha-U can be accounted for by a num
We report high-pressure x-ray diffraction and magnetization measurements combined with ab-initio calculations to demonstrate that the high-pressure optical and transport transitions recently reported in TiOCl, correspond in fact to an enhanced Ti3+-T
We study the ground state orbital ordering of $LaMnO_3$, at weak electron-phonon coupling, when the spin state is A-type antiferromagnet. We determine the orbital ordering by extending to our Jahn-Teller system a recently developed Peierls instabilit
The competition between proximate electronic phases produces a complex phenomenology in strongly correlated systems. In particular, fluctuations associated with periodic charge or spin modulations, known as density waves, may lead to exotic supercond
The one-dimensional (1D) model system Au/Ge(001), consisting of linear chains of single atoms on a surface, is scrutinized for lattice instabilities predicted in the Peierls paradigm. By scanning tunneling microscopy and electron diffraction we revea