ﻻ يوجد ملخص باللغة العربية
Begin continuous time random walks from every vertex of a graph and have particles coalesce when they collide. We use a duality relation with the voter model to prove the process is site recurrent on bounded degree graphs, and for Galton-Watson trees whose offspring distribution has exponential tail. We prove bounds on the occupation probability of a site, as well as a general 0-1 law. Similar conclusions hold for a coalescing process on trees where particles do not backtrack.
Coalescing random walk on a unimodular random rooted graph for which the root has finite expected degree visits each site infinitely often almost surely. A corollary is that an opinion in the voter model on such graphs has infinite expected lifetime.
The main results in this paper are about the full coalescence time $mathsf{C}$ of a system of coalescing random walks over a finite graph $G$. Letting $mathsf{m}(G)$ denote the mean meeting time of two such walkers, we give sufficient conditions unde
We show that the twisted planar random walk - which results by summing up stationary increments rotated by multiples of a fixed angle - is recurrent under diverse assumptions on the increment process. For example, if the increment process is alpha-mi
We introduce a new type of random walk where the definition of edge reinforcement is very different from the one in the reinforced random walk models studied so far, and investigate its basic properties, such as null/positive recurrence, transience,
We study one-dimensional nearest neighbour random walk in site-random environment. We establish precise (sharp) large deviations in the so-called ballistic regime, when the random walk drifts to the right with linear speed. In the sub-ballistic regim