ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrically detected spin echoes of donor nuclei in silicon

237   0   0.0 ( 0 )
 نشر من قبل Dane McCamey
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ability to probe the spin properties of solid state systems electrically underlies a wide variety of emerging technology. Here, we extend electrical readout of the nuclear spin states of phosphorus donors in silicon to the coherent regime with modified Hahn echo sequences. We find that, whilst the nuclear spins have electrically detected phase coherence times exceeding 2 ms, they are nonetheless limited by the artificially shortened lifetime of the probing donor electron.



قيم البحث

اقرأ أيضاً

We demonstrate electrical detection of the $^{14}$N nuclear spin coherence of NV centers at room temperature. Nuclear spins are candidates for quantum memories in quantum-information devices and quantum sensors, and hence the electrical detection of nuclear spin coherence is essential to develop and integrate such quantum devices. In the present study, we used a pulsed electrically detected electron-nuclear double resonance technique to measure the Rabi oscillations and coherence time ($T_2$) of $^{14}$N nuclear spins in NV centers at room temperature. We observed $T_2 approx$ 0.9 ms at room temperature. Our results will pave the way for the development of novel electron- and nuclear-spin-based diamond quantum devices.
248 - Y. Ando , K. Kasahara , S. Yamada 2012
We study temperature evolution of spin accumulation signals obtained by the three-terminal Hanle effect measurements in a nondegenerated silicon channel with a Schottky-tunnel-barrier contact. We find the clear difference in the temperature-dependent spin signals between spin-extraction and spin-injection conditions. In a spin-injection condition with a low bias current, the magnitude of spin signals can be enhanced despite the rise of temperature. For the interpretation of the temperature-dependent spin signals, it is important to consider the sensitivity of the spin detection at the Schottky-tunnel-barrier contact in addition to the spin diffusion in Si.
We experimentally demonstrate the inductive readout of optically hyperpolarized phosphorus-31 donor nuclear spins in an isotopically enriched silicon-28 crystal. The concentration of phosphorus donors in the crystal was 1.5 x 10$^{15}$ cm$^{-3}$, thr ee orders of magnitude lower than has previously been detected via direct inductive detection. The signal-to-noise ratio measured in a single free induction decay from a 1 cm$^3$ sample ($approx 10^{15}$ spins) was 113. By transferring the sample to an X-band ESR spectrometer, we were able to obtain a lower bound for the nuclear spin polarization at 1.7 K of 64 %. The $^{31}$P-T$_{2}$ measured with a Hahn echo sequence was 420 ms at 1.7 K, which was extended to 1.2 s with a Carr Purcell cycle. The T$_1$ of the $^{31}$P nuclear spins at 1.7 K is extremely long and could not be determined, as no decay was observed even on a timescale of 4.5 hours. Optical excitation was performed with a 1047 nm laser, which provided above bandgap excitation of the silicon. The build-up of the hyperpolarization at 4.2 K followed a single exponential with a characteristic time of 577 s, while the build-up at 1.7 K showed bi-exponential behavior with characteristic time constants of 578 s and 5670 s.
Single spin qubits based on phosphorus donors in silicon are a promising candidate for a large-scale quantum computer. Despite long coherence times, achieving uniform magnetic control remains a hurdle for scale-up due to challenges in high-frequency magnetic field control at the nanometre-scale. Here, we present a proposal for a flopping-mode electric dipole spin resonance qubit based on the combined electron and nuclear spin states of a double phosphorus donor quantum dot. The key advantage of utilising a donor-based system is that we can engineer the number of donor nuclei in each quantum dot. By creating multi-donor dots with antiparallel nuclear spin states and multi-electron occupation we can minimise the longitudinal magnetic field gradient, known to couple charge noise into the device and dephase the qubit. We describe the operation of the qubit and show that by minimising the hyperfine interaction of the nuclear spins we can achieve $pi/2-X$ gate error rates of $sim 10^{-4}$ using realistic noise models. We highlight that the low charge noise environment in these all-epitaxial phosphorus-doped silicon qubits will facilitate the realisation of strong coupling of the qubit to superconducting microwave cavities allowing for long-distance two-qubit operations.
We demonstrate how gradient ascent pulse engineering optimal control methods can be implemented on donor electron spin qubits in Si semiconductors with an architecture complementary to the original Kanes proposal. We focus on the high-fidelity contro lled-NOT (CNOT) gate and explicitly find its digitized control sequences by optimizing its fidelity over the external controls of the hyperfine A and exchange J interactions. This high-fidelity CNOT gate has an error of about $10^{-6}$, below the error threshold required for fault-tolerant quantum computation, and its operation time of 100ns is about 3 times faster than 297ns of the proposed global control scheme. It also relaxes significantly the stringent distance constraint of two neighboring donor atoms of 10~20nm as reported in the original Kanes proposal to about 30nm in which surface A and J gates may be built with current fabrication technology. The effects of the control voltage fluctuations, the dipole-dipole interaction and the electron spin decoherence on the CNOT gate fidelity are also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا