ﻻ يوجد ملخص باللغة العربية
We use the Gutzwiller variational theory to calculate the ground-state phase diagram and quasi-particle bands of LaOFeAs. The Fe3d--As4p Wannier-orbital basis obtained from density-functional theory defines the band part of our eight-band Hubbard model. The full atomic interaction between the electrons in the iron orbitals is parameterized by the Hubbard interaction U and an average Hunds-rule interaction J. We reproduce the experimentally observed small ordered magnetic moment over a large region of (U,J) parameter space. The magnetically ordered phase is a stripe spin-density wave of quasi-particles.
We study a spin $S$ quantum Heisenberg model on the Fe lattice of the rare-earth oxypnictide superconductors. Using both large $S$ and large $N$ methods, we show that this model exhibits a sequence of two phase transitions: from a high temperature sy
The minimum of the Gutzwiller energy functional depends on the number of parameters considered in the variational state. For a three-orbital Hubbard model we find that the frequently used diagonal Ansatz is very accurate in high-symmetry situations.
Understanding the controlling principles of band gaps trends in d electron perovskites is needed both for gauging metal-insulator transitions, as well as their application in catalysis and doping. The magnitude of this band gap is rather different fo
The ground states of Na$_x$CoO$_2$ ($0.0<x<1.0$) is studied by the LDA+Gutzwiller approach, where charge transfer and orbital fluctuations are all self-consistently treated {it ab-initio}. In contrast to previous studies, which are parameter-dependen
We develop a variational scheme called Gutzwiller renormalization group (GRG), which enables us to calculate the ground state of Anderson impurity models (AIM) with arbitrary numerical precision. Our method can exploit the low-entanglement property o