ﻻ يوجد ملخص باللغة العربية
The minimum of the Gutzwiller energy functional depends on the number of parameters considered in the variational state. For a three-orbital Hubbard model we find that the frequently used diagonal Ansatz is very accurate in high-symmetry situations. For lower symmetry, induced by a crystal-field splitting or the spin-orbit coupling, the discrepancies in energy between the most general and a diagonal Gutzwiller Ansatz can be quite significant. We discuss approximate schemes that may be employed in multi-band cases where a minimization of the general Gutzwiller energy functional is too demanding numerically.
We give a comprehensive introduction into a diagrammatic method that allows for the evaluation of Gutzwiller wave functions in finite spatial dimensions. We discuss in detail some numerical schemes that turned out to be useful in the real-space evalu
In this work we analyze the variational problem emerging from the Gutzwiller approach to strongly correlated systems. This problem comprises the two main steps: evaluation and minimization of the ground state energy $W$ for the postulated Gutzwiller
Partially-projected Gutzwiller variational wavefunctions are used to describe the ground state of disordered interacting systems of fermions. We compare several different variational ground states with the exact ground state for disordered one-dimens
We use the Gutzwiller variational theory to calculate the ground-state phase diagram and quasi-particle bands of LaOFeAs. The Fe3d--As4p Wannier-orbital basis obtained from density-functional theory defines the band part of our eight-band Hubbard mod
We develop the Gutzwiller approximation method to obtain the renormalized Hamiltonian of the SU(4) $t$-$J$ model, with the corresponding renormalization factors. Subsequently, a mean-field theory is employed on the renormalized Hamiltonian of the mod