ترغب بنشر مسار تعليمي؟ اضغط هنا

The Weight Distributions of Cyclic Codes and Elliptic Curves

132   0   0.0 ( 0 )
 نشر من قبل Chunming Tang
 تاريخ النشر 2011
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Cyclic codes with two zeros and their dual codes as a practically and theoretically interesting class of linear codes, have been studied for many years. However, the weight distributions of cyclic codes are difficult to determine. From elliptic curves, this paper determines the weight distributions of dual codes of cyclic codes with two zeros for a few more cases.



قيم البحث

اقرأ أيضاً

Usually, it is difficult to determine the weight distribution of an irreducible cyclic code. In this paper, we discuss the case when an irreducible cyclic code has the maximal number of distinct nonzero weights and give a necessary and sufficient con dition. In this case, we also obtain a divisible property for the weight of a codeword. Further, we present a necessary and sufficient condition for an irreducible cyclic code with only one nonzero weight. Finally, we determine the weight distribution of an irreducible cyclic code for some cases.
The distance distribution of a code is the vector whose $i^text{th}$ entry is the number of pairs of codewords with distance $i$. We investigate the structure of the distance distribution for cyclic orbit codes, which are subspace codes generated by the action of $mathbb{F}_{q^n}^*$ on an $mathbb{F}_q$-subspace $U$ of $mathbb{F}_{q^n}$. We show that for optimal full-length orbit codes the distance distribution depends only on $q,,n$, and the dimension of $U$. For full-length orbit codes with lower minimum distance, we provide partial results towards a characterization of the distance distribution, especially in the case that any two codewords intersect in a space of dimension at most 2. Finally, we briefly address the distance distribution of a union of optimal full-length orbit codes.
A long standing problem in the area of error correcting codes asks whether there exist good cyclic codes. Most of the known results point in the direction of a negative answer. The uncertainty principle is a classical result of harmonic analysis as serting that given a non-zero function $f$ on some abelian group, either $f$ or its Fourier transform $hat{f}$ has large support. In this note, we observe a connection between these two subjects. We point out that even a weak version of the uncertainty principle for fields of positive characteristic would imply that good cyclic codes do exist. We also provide some heuristic arguments supporting that this is indeed the case.
109 - Arti Yardi , Ruud Pellikaan 2017
The problem of identifying whether the family of cyclic codes is asymptotically good or not is a long-standing open problem in the field of coding theory. It is known in the literature that some families of cyclic codes such as BCH codes and Reed-Sol omon codes are asymptotically bad, however in general the answer to this question is not known. A recent result by Nelson and Van Zwam shows that, all linear codes can be obtained by a sequence of puncturing and/or shortening of a collection of asymptotically good codes~cite{Nelson_2015}. In this paper, we prove that any linear code can be obtained by a sequence of puncturing and/or shortening of some cyclic code. Therefore the result that all codes can be obtained by shortening and/or puncturing cyclic codes leaves the possibility open that cyclic codes are asymptotically good.
The famous Barnes-Wall lattices can be obtained by applying Construction D to a chain of Reed-Muller codes. By applying Construction ${{D}}^{{(cyc)}}$ to a chain of extended cyclic codes sandwiched between Reed-Muller codes, Hu and Nebe (J. London Ma th. Soc. (2) 101 (2020) 1068-1089) constructed new series of universally strongly perfect lattices sandwiched between Barnes-Wall lattices. In this paper, we explicitly determine the minimum weight codewords of those codes for some special cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا