ترغب بنشر مسار تعليمي؟ اضغط هنا

Good cyclic codes and the uncertainty principle

131   0   0.0 ( 0 )
 نشر من قبل Shai Evra
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A long standing problem in the area of error correcting codes asks whether there exist good cyclic codes. Most of the known results point in the direction of a negative answer. The uncertainty principle is a classical result of harmonic analysis asserting that given a non-zero function $f$ on some abelian group, either $f$ or its Fourier transform $hat{f}$ has large support. In this note, we observe a connection between these two subjects. We point out that even a weak version of the uncertainty principle for fields of positive characteristic would imply that good cyclic codes do exist. We also provide some heuristic arguments supporting that this is indeed the case.



قيم البحث

اقرأ أيضاً

One of the most important and challenging problems in coding theory is to construct codes with best possible parameters and properties. The class of quasi-cyclic (QC) codes is known to be fertile to produce such codes. Focusing on QC codes over the b inary field, we have found 113 binary QC codes that are new among the class of QC codes using an implementation of a fast cyclic partitioning algorithm and the highly effective ASR algorithm. Moreover, these codes have the following additional properties: a) they have the same parameters as best known linear codes, and b) many of the have additional desired properties such as being reversible, LCD, self-orthogonal or dual-containing. Additionally, we present an algorithm for the generation of new codes from QC codes using ConstructionX, and introduce 35 new record breaking linear codes produced from this method.
We apply quantum Construction X on quasi-cyclic codes with large Hermitian hulls over $mathbb{F}_4$ and $mathbb{F}_9$ to derive good qubit and qutrit stabilizer codes, respectively. In several occasions we obtain quantum codes with stricly improved p arameters than the current record. In numerous other occasions we obtain quantum codes with best-known performance. For the qutrit ones we supply a systematic construction to fill some gaps in the literature.
109 - Arti Yardi , Ruud Pellikaan 2017
The problem of identifying whether the family of cyclic codes is asymptotically good or not is a long-standing open problem in the field of coding theory. It is known in the literature that some families of cyclic codes such as BCH codes and Reed-Sol omon codes are asymptotically bad, however in general the answer to this question is not known. A recent result by Nelson and Van Zwam shows that, all linear codes can be obtained by a sequence of puncturing and/or shortening of a collection of asymptotically good codes~cite{Nelson_2015}. In this paper, we prove that any linear code can be obtained by a sequence of puncturing and/or shortening of some cyclic code. Therefore the result that all codes can be obtained by shortening and/or puncturing cyclic codes leaves the possibility open that cyclic codes are asymptotically good.
The famous Barnes-Wall lattices can be obtained by applying Construction D to a chain of Reed-Muller codes. By applying Construction ${{D}}^{{(cyc)}}$ to a chain of extended cyclic codes sandwiched between Reed-Muller codes, Hu and Nebe (J. London Ma th. Soc. (2) 101 (2020) 1068-1089) constructed new series of universally strongly perfect lattices sandwiched between Barnes-Wall lattices. In this paper, we explicitly determine the minimum weight codewords of those codes for some special cases.
In this paper we give the generalization of lifted codes over any finite chain ring. This has been done by using the construction of finite chain rings from $p$-adic fields. Further we propose a lattice construction from linear codes over finite chain rings using lifted codes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا