ترغب بنشر مسار تعليمي؟ اضغط هنا

On shortened and punctured cyclic codes

110   0   0.0 ( 0 )
 نشر من قبل Arti Yardi
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The problem of identifying whether the family of cyclic codes is asymptotically good or not is a long-standing open problem in the field of coding theory. It is known in the literature that some families of cyclic codes such as BCH codes and Reed-Solomon codes are asymptotically bad, however in general the answer to this question is not known. A recent result by Nelson and Van Zwam shows that, all linear codes can be obtained by a sequence of puncturing and/or shortening of a collection of asymptotically good codes~cite{Nelson_2015}. In this paper, we prove that any linear code can be obtained by a sequence of puncturing and/or shortening of some cyclic code. Therefore the result that all codes can be obtained by shortening and/or puncturing cyclic codes leaves the possibility open that cyclic codes are asymptotically good.

قيم البحث

اقرأ أيضاً

79 - Kai Niu , Jincheng Dai , Kai Chen 2016
Polar codes are the first class of constructive channel codes achieving the symmetric capacity of the binary-input discrete memoryless channels. But the corresponding code length is limited to the power of two. In this paper, we establish a systemati c framework to design the rate-compatible punctured polar (RCPP) codes with arbitrary code length. A new theoretic tool, called polar spectra, is proposed to count the number of paths on the code tree with the same number of zeros or ones respectively. Furthermore, a spectrum distance SD0 (SD1) and a joint spectrum distance (JSD) are presented as performance criteria to optimize the puncturing tables. For the capacity-zero puncturing mode (punctured bits are unknown to the decoder), we propose a quasi-uniform puncturing algorithm, analyze the number of equivalent puncturings and prove that this scheme can maximize SD1 and JSD. Similarly, for the capacity-one mode (punctured bits are known to the decoder), we also devise a reversal quasi-uniform puncturing scheme and prove that it has the maximum SD0 and JSD. Both schemes have a universal puncturing table without any exhausted search. These optimal RCPP codes outperform the performance of turbo codes in LTE wireless communication systems.
Cyclic codes, as linear block error-correcting codes in coding theory, play a vital role and have wide applications. Ding in cite{D} constructed a number of classes of cyclic codes from almost perfect nonlinear (APN) functions and planar functions ov er finite fields and presented ten open problems on cyclic codes from highly nonlinear functions. In this paper, we consider two open problems involving the inverse APN functions $f(x)=x^{q^m-2}$ and the Dobbertin APN function $f(x)=x^{2^{4i}+2^{3i}+2^{2i}+2^{i}-1}$. From the calculation of linear spans and the minimal polynomials of two sequences generated by these two classes of APN functions, the dimensions of the corresponding cyclic codes are determined and lower bounds on the minimum weight of these cyclic codes are presented. Actually, we present a framework for the minimal polynomial and linear span of the sequence $s^{infty}$ defined by $s_t=Tr((1+alpha^t)^e)$, where $alpha$ is a primitive element in $GF(q)$. These techniques can also be applied into other open problems in cite{D}.
The famous Barnes-Wall lattices can be obtained by applying Construction D to a chain of Reed-Muller codes. By applying Construction ${{D}}^{{(cyc)}}$ to a chain of extended cyclic codes sandwiched between Reed-Muller codes, Hu and Nebe (J. London Ma th. Soc. (2) 101 (2020) 1068-1089) constructed new series of universally strongly perfect lattices sandwiched between Barnes-Wall lattices. In this paper, we explicitly determine the minimum weight codewords of those codes for some special cases.
The notion of a Private Information Retrieval (PIR) code was recently introduced by Fazeli, Vardy and Yaakobi who showed that this class of codes permit PIR at reduced levels of storage overhead in comparison with replicated-server PIR. In the presen t paper, the construction of an $(n,k)$ $tau$-server binary, linear PIR code having parameters $n = sumlimits_{i = 0}^{ell} {m choose i}$, $k = {m choose ell}$ and $tau = 2^{ell}$ is presented. These codes are obtained through homogeneous-polynomial evaluation and correspond to the binary, Projective Reed Muller (PRM) code. The construction can be extended to yield PIR codes for any $tau$ of the form $2^{ell}$, $2^{ell}-1$ and any value of $k$, through a combination of single-symbol puncturing and shortening of the PRM code. Each of these code constructions above, have smaller storage overhead in comparison with other PIR codes appearing in the literature. For the particular case of $tau=3,4$, we show that the codes constructed here are optimal, systematic PIR codes by providing an improved lower bound on the block length $n(k, tau)$ of a systematic PIR code. It follows from a result by Vardy and Yaakobi, that these codes also yield optimal, systematic primitive multi-set $(n, k, tau)_B$ batch codes for $tau=3,4$. The PIR code constructions presented here also yield upper bounds on the generalized Hamming weights of binary PRM codes.
This is a survey on the theory of skew-cyclic codes based on skew-polynomial rings of automorphism type. Skew-polynomial rings have been introduced and discussed by Ore (1933). Evaluation of skew polynomials and sets of (right) roots were first consi dered by Lam (1986) and studied in great detail by Lam and Leroy thereafter. After a detailed presentation of the most relevant properties of skew polynomials, we survey the algebraic theory of skew-cyclic codes as introduced by Boucher and Ulmer (2007) and studied by many authors thereafter. A crucial role will be played by skew-circulant matrices. Finally, skew-cyclic codes with designed minimum distance are discussed, and we report on two different kinds of skew-BCH codes, which were designed in 2014 and later.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا