ﻻ يوجد ملخص باللغة العربية
Earlier we reported an observation at low temperatures of activation conductivity with small activation energies in strongly doped uncompensated layers of p-GaAs/AlGaAs quantum wells. We attributed it to Anderson delocalization of electronic states in the vicinity of the maximum of the narrow impurity band. A possibility of such delocalization at relatively small impurity concentration is related to the small width of the impurity band characterized by weak disorder. In this case the carriers were activated from the bandtail while its presence was related to weak background compensation. Here we study an effect of the extrinsic compensation and of the impurity concentration on this virtual Anderson transition. It was shown that an increase of compensation initially does not affect the Anderson transition, however at strong compensations the transition is suppressed due to increase of disorder. In its turn, an increase of the dopant concentration initially leads to a suppression of the transition due an increase of disorder, the latter resulting from a partial overlap of the Hubbard bands. However at larger concentration the conductivity becomes to be metallic due to Mott transition.
In highly doped uncompensated p-type layers within the central part of GaAs/AlGaAs quantum wells at low temperatures we observed an activated behavior of the conductivity with low activation energies (1-3) meV which can not be ascribed to standard me
We study spatial structures of anomalously localized states (ALS) in tail regions at the critical point of the Anderson transition in the two-dimensional symplectic class. In order to examine tail structures of ALS, we apply the multifractal analysis
We report on two sub-band transport in double gate SiO$_2$-Si-SiO$_2$ quantum well with 14 nm thick Si layer at 270 mK. At symmetric well potential the experimental sub-band spacing changes monotonically from 2.3 to 0.3 meV when the total density is
We report experimental studies of conductance and magnetoconductance of GaAs/AlGaAs quantum well structures where both wells and barriers are doped by acceptor impurity Be. Temperature dependence of conductance demonstrate a non-monotonic behavior at
We analytically study optical properties of several types of defects in Bragg multiple quantum well structures. We show that a single defect leads to two local polariton modes in the photonic band gap. These modes lead to peculiarities in reflection