ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature-dependent disorder and magnetic field driven disorder: experimental observations for doped GaAs/AlGaAs quantum well structures

58   0   0.0 ( 0 )
 نشر من قبل Nina Agrinskaya
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report experimental studies of conductance and magnetoconductance of GaAs/AlGaAs quantum well structures where both wells and barriers are doped by acceptor impurity Be. Temperature dependence of conductance demonstrate a non-monotonic behavior at temperatures around 100 K. At small temperatures (less than 10 K) we observed strong negative magnetoresistance at moderate magnetic field which crossed over to positive magnetoresistance at very strong magnetic fields and was completely suppressed with an increase of temperature. We ascribe these unusual features to effects of temperature and magnetic field on a degree of disorder. The temperature dependent disorder is related to charge redistribution between different localized states with an increase of temperature. The magnetic field dependent disorder is also related by charge redistribution between different centers, however in this case an important role is played by the doubly occupied states of the upper Hubbard band, their occupation being sensitive to magnetic field due to on-site spin correlations. The detailed theoretical model is present.



قيم البحث

اقرأ أيضاً

The effect of short-range disorder in nodal line semimetals is studied by numerically exact means. For arbitrary small disorder, a novel semimetallic phase is unveiled for which the momentum-space amplitude of the ground-state wave function is concen trated around the nodal line and follows a multifractal distribution. At a critical disorder strength, a semimetal to compressible metal transition occurs, coinciding with a multi- to single-fractality transition. The universality class of this critical point is characterized by the correlation length and dynamical exponents. At considerably higher disorder, an Anderson metal-insulator transition takes place. Our results show that the nature of the semimetallic phase in non-clean samples is fundamentally different from a clean nodal semimetal.
We observed a slow relaxation of magnetoresistance in response to applied magnetic field in selectively doped p-GaAs-AlGaAs structures with partially filled upper Hubbard band. We have paid a special attention to exclude the effects related to temper ature fluctuations. Though this effect is important, we have found that the general features of slow relaxation still persist. This behavior is interpreted as related to the properties of the Coulomb glass formed by charged centers with account of spin correlations, which are sensitive to an external magnetic field. Variation of the magnetic field changes numbers of impurity complexes of different types. As a result, it effects the shape and depth of the polaron gap formed at the states belonging to the percolation cluster responsible for the conductance. The suggested model explains both the qualitative behavior and the order of magnitude of the slowly relaxing magnetoresistance.
The coherent potential approximation (CPA) is extended to describe satisfactorily the motion of particles in a random potential which is spatially correlated and smoothly varying. In contrast to existing cluster-CPA methods, the present scheme preser ves the simplicity of the conventional CPA in using a single self-energy function. Its accuracy is checked by a comparison with the exact moments of the Greens function, and with the spectral function from numerical simulations. The scheme is applied to excitonic absorption spectra in different spatial dimensions.
We develop a theory for a qualitatively new type of disorder in condensed matter systems arising from local twist-angle fluctuations in two strongly coupled van der Waals monolayers twisted with respect to each other to create a flat band moire super lattice. The new paradigm of twist angle disorder arises from the currently ongoing intense research activity in the physics of twisted bilayer graphene. In experimental samples of pristine twisted bilayer graphene, which are nominally free of impurities and defects, the main source of disorder is believed to arise from the unavoidable and uncontrollable non-uniformity of the twist angle across the sample. To address this new physics of twist-angle disorder, we develop a real-space, microscopic model of twisted bilayer graphene where the angle enters as a free parameter. In particular, we focus on the size of single-particle energy gaps separating the miniband from the rest of the spectrum, the Van Hove peaks, the renormalized Dirac cone velocity near charge neutrality, and the minibandwidth. We find that the energy gaps and minibandwidth are strongly affected by disorder while the renormalized velocity remains virtually unchanged. We discuss the implications of our results for the ongoing experiments on twisted bilayer graphene. Our theory is readily generalized to future studies of twist angle disorder effects on all electronic properties of moire superlattices created by twisting two coupled van der Waals materials with respect to each other.
84 - K. Storr , D. Graf , J. S. Brooks 2002
We report inter-plane ($R_{zz}$) electrical transport measurements in the tp series of organic conductors at very high magnetic fields. In the field range between 36 and 60 T $R_{zz}$ shows a very hysteretic first order phase transition from metallic to an insulating state. This transition does not affect the Shubnikov-de-Haas oscillations associated with the two-dimensional (2D) Fermi surface. We argue that this transition originates from inter-plane disorder which gives rise to incoherent transport along the least conducting axis. We conclude that this system becomes a strictly 2D Fermi-liquid at high magnetic fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا