ﻻ يوجد ملخص باللغة العربية
Chaos and oscillations continue to capture the interest of both the scientific and public domains. Yet despite the importance of these qualitative features, most attempts at constructing mathematical models of such phenomena have taken an indirect, quantitative approach, e.g. by fitting models to a finite number of data-points. Here we develop a qualitative inference framework that allows us to both reverse engineer and design systems exhibiting these and other dynamical behaviours by directly specifying the desired characteristics of the underlying dynamical attractor. This change in perspective from quantitative to qualitative dynamics, provides fundamental and new insights into the properties of dynamical systems.
Equipment sharing among people who inject drugs (PWID) is a key risk factor in infection by hepatitis C virus (HCV). Both the effectiveness and cost-effectiveness of interventions aimed at reducing HCV transmission in this population (such as opioid
Scaling regions -- intervals on a graph where the dependent variable depends linearly on the independent variable -- abound in dynamical systems, notably in calculations of invariants like the correlation dimension or a Lyapunov exponent. In these ap
In this paper, based on the Akaike information criterion, root mean square error and robustness coefficient, a rational evaluation of various epidemic models/methods, including seven empirical functions, four statistical inference methods and five dy
Parkinsons disease (PD) is a common neurodegenerative disease with a high degree of heterogeneity in its clinical features, rate of progression, and change of variables over time. In this work, we present a novel data-driven, network-based Trajectory
An update is given on the current status of solar and stellar dynamos. At present, it is still unclear why stellar cycle frequencies increase with rotation frequency in such a way that their ratio increases with stellar activity. The small-scale dyna