ﻻ يوجد ملخص باللغة العربية
Currently, there are about 3 dozen known super-Earth (M < 10 MEarth), of which 8 are transiting planets suitable for atmospheric follow-up observations. Some of the planets are exposed to extreme temperatures as they orbit close to their host stars, e.g., CoRot-7b, and all of these planets have equilibrium temperatures significantly hotter than the Earth. Such planets can develop atmospheres through (partial) vaporization of their crustal and/or mantle silicates. We investigated the chemical equilibrium composition of such heated systems from 500 - 4000 K and total pressures from 10-6 to 10+2 bars. The major gases are H2O and CO2 over broad temperature and pressure ranges, and Na, K, O2, SiO, and O at high temperatures and low pressures. We discuss the differences in atmospheric composition arising from vaporization of SiO2-rich (i.e., felsic) silicates (like Earths continental crust) and MgO-, FeO-rich (i.e., mafic) silicates like the bulk silicate Earth. The computational results will be useful in planning spectroscopic studies of the atmospheres of Earth-like exoplanets.
Observations of exoplanet atmospheres have shown that aerosols, like in the Solar System, are common across a variety of temperatures and planet types. The formation and distribution of these aerosols are inextricably intertwined with the composition
Atmospheric compositions for rocky exoplanets will depend strongly on the bulk planetary composition and the orbital position of the planet. Non-traditional gases may be present in the atmospheres of exceptionally hot planets. Atmospheres of more cle
The near-term search for life beyond the solar system currently focuses on transiting planets orbiting small M dwarfs, and the challenges of detecting signs of life in their atmospheres. However, planets orbiting white dwarfs (WDs) would provide a un
Clouds and hazes are commonplace in the atmospheres of solar system planets and are likely ubiquitous in the atmospheres of extrasolar planets as well. Clouds affect every aspect of a planetary atmosphere, from the transport of radiation, to atmosphe
We explore how well James Webb Space Telescope (JWST) spectra will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-E