ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterizing transiting exoplanet atmospheres with JWST

73   0   0.0 ( 0 )
 نشر من قبل Tom Greene
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore how well James Webb Space Telescope (JWST) spectra will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets with clear, cloudy, or high mean molecular weight atmospheres. Next we simulate the $lambda = 1 - 11$ $mu$m transmission and emission spectra of these systems for several JWST instrument modes for single transit and eclipse events. We then perform retrievals to determine how well temperatures and molecular mixing ratios (CH$_4$, CO, CO$_2$, H$_2$O, NH$_3$) can be constrained. We find that $lambda = 1 - 2.5$ $mu$m transmission spectra will often constrain the major molecular constituents of clear solar composition atmospheres well. Cloudy or high mean molecular weight atmospheres will often require full $1 - 11$ $mu$m spectra for good constraints, and emission data may be more useful in cases of sufficiently high $F_p$ and high $F_p/F_*$. Strong temperature

قيم البحث

اقرأ أيضاً

[Abridged] We have only been able to comprehensively characterize the atmospheres of a handful of transiting planets, because most orbit faint stars. TESS will discover transiting planets orbiting the brightest stars, enabling, in principle, an atmos pheric survey of 10^2 to 10^3 bright hot Jupiters and warm sub-Neptunes. Uniform observations of such a statistically significant sample would provide leverage to understand---and learn from---the diversity of short-period planets. We argue that the best way to maximize the scientific returns of TESS is with a follow-up space mission consisting of a ~1 m telescope with an optical--NIR spectrograph: it could measure molecular absorption for non-terrestrial planets, as well as eclipses and phase variations for the hottest jovians. Such a mission could observe up to 10^3 transits per year, thus enabling it to survey a large fraction of the bright (J<11) TESS planets. JWST could be used to perform detailed atmospheric characterization of the most interesting transiting targets (transit, eclipse, and---when possible---phase-resolved spectroscopy). TESS is also expected to discover a few temperate terrestrial planets transiting nearby M-Dwarfs. Characterizing these worlds will be time-intensive: JWST will need months to provide tantalizing constraints on the presence of an atmosphere, planetary rotational state, clouds, and greenhouse gases. Future flagship missions should be designed to provide better constraints on the habitability of M-Dwarf temperate terrestrial planets.
We highlight how guaranteed time observations (GTOs) and early release science (ERS) will advance understanding of exoplanet atmospheres and provide a glimpse into what transiting exoplanet science will be done with JWST during its first year of oper ations. These observations of 27 transiting planets will deliver significant insights into the compositions, chemistry, clouds, and thermal profiles of warm-to-hot gas-dominated planets well beyond what we have learned from HST, Spitzer, and other observatories to date. These data and insights will in turn inform our understanding of planet formation, atmospheric transport and climate, and relationships between various properties. Some insight will likely be gained into rocky planet atmospheres as well. JWST will be the most important mission for characterizing exoplanet atmospheres in the 2020s, and this should be considered in assessing exoplanet science for the 2020s and 2030s and future facilities.
The James Webb Space Telescope (JWST) will offer the first opportunity to characterize terrestrial exoplanets with sufficient precision to identify high mean molecular weight atmospheres, and TRAPPIST-1s seven known transiting Earth-sized planets are particularly favorable targets. To assist community preparations for JWST, we use simulations of plausible post-ocean-loss and habitable environments for the TRAPPIST-1 exoplanets, and test simulations of all bright object time series spectroscopy modes and all MIRI photometry filters to determine optimal observing strategies for atmospheric detection and characterization using both transmission and emission observations. We find that transmission spectroscopy with NIRSpec Prism is optimal for detecting terrestrial, CO2 containing atmospheres, potentially in fewer than 10 transits for all seven TRAPPIST-1 planets, if they lack high altitude aerosols. If the TRAPPIST-1 planets possess Venus-like H2SO4 aerosols, up to 12 times more transits may be required to detect atmospheres. We present optimal instruments and observing modes for the detection of individual molecular species in a given terrestrial atmosphere and an observational strategy for discriminating between evolutionary states. We find that water may be prohibitively difficult to detect in both Venus-like and habitable atmospheres due to its presence lower in the atmosphere where transmission spectra are less sensitive. Although the presence of biogenic O2 and O3 will be extremely challenging to detect, abiotically produced oxygen from past ocean loss may be detectable for all seven TRAPPIST-1 planets via O2-O2 collisionally-induced absorption at 1.06 and 1.27 microns, or via NIR O3 features for the outer three planets. Our results constitute a suite of hypotheses on the nature and detectability of highly-evolved terrestrial exoplanet atmospheres that may be tested with JWST.
The James Webb Space Telescope (JWST) presents the opportunity to transform our understanding of planets and the origins of life by revealing the atmospheric compositions, structures, and dynamics of transiting exoplanets in unprecedented detail. How ever, the high-precision, time-series observations required for such investigations have unique technical challenges, and prior experience with other facilities indicates that there will be a steep learning curve when JWST becomes operational. In this paper we describe the science objectives and detailed plans of the Transiting Exoplanet Community Early Release Science (ERS) Program, which is a recently approved program for JWST observations early in Cycle 1. The goal of this project, for which the obtained data will have no exclusive access period, is to accelerate the acquisition and diffusion of technical expertise for transiting exoplanet observations with JWST, while also providing a compelling set of representative datasets that will enable immediate scientific breakthroughs. The Transiting Exoplanet Community ERS Program will exercise the time-series modes of all four JWST instruments that have been identified as the consensus highest priorities, observe the full suite of transiting planet characterization geometries (transits, eclipses, and phase curves), and target planets with host stars that span an illustrative range of brightnesses. The observations in this program were defined through an inclusive and transparent process that had participation from JWST instrument experts and international leaders in transiting exoplanet studies. Community engagement in the project will be centered on a two-phase Data Challenge that culminates with the delivery of planetary spectra, time-series instrument performance reports, and open-source data analysis toolkits in time to inform the agenda for Cycle 2 of the JWST mission.
Multi-wavelength transit and secondary-eclipse light-curve observations are some of the most powerful techniques to probe the thermo-chemical properties of exoplanets. Although the large planet-to-star brightness contrast and few available spectral b ands produce data with low signal-to-noise ratios, a Bayesian approach can robustly reveal what constraints we can set, without over-interpreting the data. Here I performed an end-to-end analysis of transiting exoplanet data. I analyzed space-telescope data for three planets to characterize their atmospheres and refine their orbits, investigated correlated noise estimators, and contributed to the development of the respective data-analysis pipelines. Chapters 2 and 3 describe the Photometry for Orbits, Eclipses and Transits (POET) pipeline to model Spitzer Space Telescope light curves, applied to secondary-eclipse observations of the Jupiter-sized planets WASP-8b and TrES-1. Chapter 4 studies commonly used correlated-noise estimators for exoplanet light-curve modeling, time averaging, residual permutations, and wavelet likelihood, and assesses their applicability and limitations to estimate parameters uncertainties. Chapter 5 describes the open-source Bayesian Atmospheric Radiative Transfer (BART) code to characterize exoplanet atmospheres. BART combines a thermochemical-equilibrium code, a one-dimensional line-by-line radiative-transfer code, and the Multi-core Markov-chain Monte Carlo statistical module to constrains the atmospheric temperature and chemical-abundance profiles of exoplanets. I applied the BART code to the Hubble and Spitzer Space Telescope transit observations of the Neptune-sized planet HAT-P-11b. BART finds an atmosphere enhanced in heavy elements, constraining the water abundance to ~100 times that of the solar abundance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا