ترغب بنشر مسار تعليمي؟ اضغط هنا

Aerosols in Exoplanet Atmospheres

251   0   0.0 ( 0 )
 نشر من قبل Peter Gao
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observations of exoplanet atmospheres have shown that aerosols, like in the Solar System, are common across a variety of temperatures and planet types. The formation and distribution of these aerosols are inextricably intertwined with the composition and thermal structure of the atmosphere. At the same time, these aerosols also interfere with our probes of atmospheric composition and thermal structure, and thus a better understanding of aerosols lead to a better understanding of exoplanet atmospheres as a whole. Here we review the current state of knowledge of exoplanet aerosols as determined from observations, modeling, and laboratory experiments. Measurements of the transmission spectra, dayside emission, and phase curves of transiting exoplanets, as well as the emission spectrum and light curves of directly imaged exoplanets and brown dwarfs have shown that aerosols are distributed inhomogeneously in exoplanet atmospheres, with aerosol distributions varying significantly with planet equilibrium temperature and gravity. Parameterized and microphysical models predict that these aerosols are likely composed of oxidized minerals like silicates for the hottest exoplanets, while at lower temperatures the dominant aerosols may be composed of alkali salts and sulfides. Particles originating from photochemical processes are also likely at low temperatures, though their formation process is highly complex, as revealed by laboratory work. In the years to come, new ground- and space-based observatories will have the capability to assess the composition of exoplanet aerosols, while new modeling and laboratory efforts will improve upon our picture of aerosol formation and dynamics.



قيم البحث

اقرأ أيضاً

Formation of hazes at microbar pressures has been explored by theoretical models of exoplanet atmospheres to explain Rayleigh scattering and/or featureless transmission spectra, however observational evidence of aerosols in the low pressure formation environments has proved elusive. Here, we show direct evidence of aerosols existing at $sim$1 microbar pressures in the atmosphere of the warm sub-Saturn WASP-69b using observations taken with Space Telescope Imaging Spectrograph (STIS) and Wide Field Camera 3 (WFC3) instruments on the Hubble Space Telescope. The transmission spectrum shows a wavelength-dependent slope induced by aerosol scattering that covers 11 scale heights of spectral modulation. Drawing on the extensive studies of haze in our Solar System, we model the transmission spectrum based on a scaled version of Jupiters haze density profile to show that WASP-69b transmission spectrum can be produced by scattering from an approximately constant density of particles extending throughout the atmospheric column from 40 millibar to microbar pressures. These results are consistent with theoretical expectations based on microphysics of the aerosol particles that have suggested haze can exist at microbar pressures in exoplanet atmospheres.
Clouds and hazes are commonplace in the atmospheres of solar system planets and are likely ubiquitous in the atmospheres of extrasolar planets as well. Clouds affect every aspect of a planetary atmosphere, from the transport of radiation, to atmosphe ric chemistry, to dynamics and they influence - if not control - aspects such as surface temperature and habitability. In this review we aim to provide an introduction to the role and properties of clouds in exoplanetary atmospheres. We consider the role clouds play in influencing the spectra of planets as well as their habitability and detectability. We briefly summarize how clouds are treated in terrestrial climate models and consider the far simpler approaches that have been taken so far to model exoplanet clouds, the evidence for which we also review. Since clouds play a major role in the atmospheres of certain classes of brown dwarfs we briefly discuss brown dwarf cloud modeling as well. We also review how the scattering and extinction efficiencies of cloud particles may be approximated in certain limiting cases of small and large particles in order to facilitate physical understanding. Since clouds play such important roles in planetary atmospheres, cloud modeling may well prove to be the limiting factor in our ability to interpret future observations of extrasolar planets.
80 - Kristen Menou 2018
Turbulent vertical transport driven by double-diffusive shear instabilities is identified as likely important in hot exoplanet atmospheres. In hot Jupiter atmospheres, the resulting vertical mixing appears sufficient to alleviate the nightside cold t rap, thus facilitating the maintenance of nocturnal clouds on these planets. The strong level of vertical mixing expected near hot Jupiter thermal photospheres will impact their atmospheric chemistry and even their vertical structures where cloud radiative feedback proves important.
We explore how well James Webb Space Telescope (JWST) spectra will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-E arth planets with clear, cloudy, or high mean molecular weight atmospheres. Next we simulate the $lambda = 1 - 11$ $mu$m transmission and emission spectra of these systems for several JWST instrument modes for single transit and eclipse events. We then perform retrievals to determine how well temperatures and molecular mixing ratios (CH$_4$, CO, CO$_2$, H$_2$O, NH$_3$) can be constrained. We find that $lambda = 1 - 2.5$ $mu$m transmission spectra will often constrain the major molecular constituents of clear solar composition atmospheres well. Cloudy or high mean molecular weight atmospheres will often require full $1 - 11$ $mu$m spectra for good constraints, and emission data may be more useful in cases of sufficiently high $F_p$ and high $F_p/F_*$. Strong temperature
A long-term goal of exoplanet studies is the identification and detection of biosignature gases. Beyond the most discussed biosignature gas O$_2$, only a handful of gases have been considered in detail. Here we evaluate phosphine (PH$_3$). On Earth, PH$_3$ is associated with anaerobic ecosystems, and as such is a potential biosignature gas on anoxic exoplanets. We simulate CO$_2-$ and H$_2-$dominated habitable terrestrial planet atmospheres. We find that PH$_3$ can accumulate to detectable concentrations on planets with surface production fluxes of 10$^{10}$-10$^{14}$ cm$^{-2}$ s$^{-1}$ (corresponding to surface concentrations of 10s of ppb to 100s of ppm), depending on atmospheric composition and UV flux. While high, such surface fluxes are comparable to the global terrestrial production rate of CH$_4$ (10$^{11}$ cm$^{-2}$ s$^{-1}$) and below the maximum local terrestrial PH$_3$ production rate (10$^{14}$ cm$^{-2}$ s$^{-1}$). As with other gases, PH$_3$ can more readily accumulate on low-UV planets, e.g. planets orbiting quiet M-dwarfs or with a photochemical UV shield. If detected, PH$_3$ is a promising biosignature gas, as it has no known abiotic false positives on terrestrial planets that could generate the high fluxes required for detection. PH$_3$ also has 3 strong spectral features such that in any atmosphere scenario 1 of the 3 will be unique compared to other dominant spectroscopic molecules. PH$_3$s weakness as a biosignature gas is its high reactivity, requiring high outgassing for detectability. We calculate that 10s of hours of JWST time are required for a potential detection of PH$_3$. Yet because PH$_3$ is spectrally active in the same wavelength regions as other atmospherically important molecules (e.g., H$_2$O and CH$_4$), searches for PH$_3$ can be carried out at no additional observational cost to searches for other molecules relevant to exoplanet habitability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا