ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermally activated exchange narrowing of the Gd3+ ESR fine structure in a single crystal of Ce1-xGdxFe4P12 (x = 0.001) skutterudite

48   0   0.0 ( 0 )
 نشر من قبل Fernando Garcia
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report electron spin resonance (ESR) measurements in the Gd3+ doped semiconducting filled skutterudite compound Ce1-xGdxFe4P12 (x = 0.001). As the temperature T varies from T = 150 K to T = 165 K, the Gd3+ ESR fine and hyperfine structures coalesce into a broad inhomogeneous single resonance. At T = 200 K the line narrows and as T increases further, the resonance becomes homogeneous with a thermal broadening of 1.1(2) Oe/K. These results suggest that the origin of these features may be associated to a subtle interdependence of thermally activated mechanisms that combine: i) an increase with T of the density of activated conduction-carriers across the T-dependent semiconducting pseudogap; ii) the Gd3+ Korringa relaxation process due to an exchange interaction, J_{fd}S.s, between the Gd3+ localized magnetic moments and the thermally activated conduction-carriers and; iii) a relatively weak confining potential of the rare-earth ions inside the oversized (Fe2P3)4 cage, which allows the rare-earths to become rattler Einstein oscillators above T = 148 K. We argue that the rattling of the Gd3+ ions, via a motional narrowing mechanism, also contributes to the coalescence of the ESR fine and hyperfine structure.

قيم البحث

اقرأ أيضاً

In this work we report electron spin resonance (ESR) measurements in the semiconducting Ce1-xGdxFe4P12 (x ~ 0.001) filled skutterudite compounds. Investigation of the temperature (T) dependence of the ESR spectra and relaxation process suggests, that in the T-interval of 140-160 K, the onset of a weak metal-insulator (M-I) transition takes place due to the increasing density of thermally activated carriers across the semiconducting gap of ~ 1500 K. In addition, the observed low-T fine and hyperfine structures start to collapse at ~ 140 K and is completely absent for > 160 K. We claim that the increasing carrier density is able to trigger the rattling of the Gd3+ ions which in turn is responsible, via a motional narrowing mechanism, for the collapse of the ESR spectra.
The local environment of Gd3+ (4f7 S=7/2) ions in single crystals of Ca1-xGdxB6 (0.0001 < x < 0.01) is studied by means of Electron Spin Resonance (ESR). The spectra for low concentration samples (x < 0.001) show a split spectrum due to cubic crystal field effects(CFE). The lineshape of each fine structure line is lorentzian, indicating an insulating environment for the Gd3+ ions. For higher concentrations (0.003 < x < 0.01), the spectra show a single resonance (g=1.992(4), DH1/2 ~ 30-60 Oe) with no CFE and dysonian lineshape indicating metallic environment for the Gd3+ ions. For intermediate concentrations, a coexistence of spectra corresponding to insulating and metallic regions is observed. Most of the measured samples show the weak ferromagnetism (WF) as reported for Ca1-xLaxB6 (x ~ 0.005), but, surprisingly, this WF has no effect in our ESR spectra either for metallic or insulating environments. This result suggests that the ferromagnetism in these systems might be isolated in clusters (defect-rich regions) and its relationship with metallicity is nontrivial.
We present measurements of the resistivity and the upper critical field H_c2 of Nd(O_0.7F_0.3)FeAs single crystals in strong DC and pulsed magnetic fields up to 45 T and 60 T, respectively. We found that the field scale of H_c2 is comparable to ~100 T of high T_c cuprates. H_c2(T) parallel to the c-axis exhibits a pronounced upward curvature similar to what was extracted from earlier measurements on polycrystalline samples. Thus this behavior is indeed an intrinsic feature of oxypnictides, rather than manifestation of vortex lattice melting or granularity. The orientational dependence of H_c2 shows deviations from the one-band Ginzburg-Landau scaling. The mass anisotropy decreases as T decreases, from 9.2 at 44K to 5 at 34K. Spin dependent magnetoresistance and nonlinearities in the Hall coefficient suggest contribution to the conductivity from electron-electron interactions modified by disorder reminiscent that of diluted magnetic semiconductors. The Ohmic resistivity measured below T_c but above the irreversibility field exhibits a clear Arrhenius thermally activated behavior over 4-5 decades. The activation energy has very different field dependencies for H||ab and Hperp ab. We discuss to what extent different pairing scenarios can manifest themselves in the observed behavior of H_{c2}, using the two-band model of superconductivity. The results indicate the importance of paramagnetic effects on H_c2(T),which may significantly reduce H_c2(0) as compared toH_c2(0)~200-300 T based on extrapolations of H_c2(T) near T_c down to low temperatures.
We present the single-crystalline x-ray diffraction study on the Ba4Ru3O10 consisting of the corner-shared Ru3O12 trimers. The crystal structure is re-determined from 78 to 300 K across an antiferromagnetic transition at 105 K. The orthorhombic symme try (Cmca, space group No. 64) is preserved at all temperatures measured. This structure presents exceptionally long Ru-O distances characterized by a significant distribution within the Ru3O12 trimer. A bond valence sum calculation suggests that the charge disproportionation within the Ru3O12 trimer emerges even at room temperature, which we ascribe to molecular orbital formation in the Ru3O12 trimer, as supported by recent theoretical calculations. Based on the analyzed crystal structure, the electronic states and the nature of the phase transition at 105 K are discussed.
We use neutron scattering to study the spin and lattice structure on single crystals of SrFe2As2, the parent compound of the FeAs based superconductor (Sr,K)Fe2As2. We find that SrFe2As2 exhibits an abrupt structural phase transitions at 220K, where the structure changes from tetragonal with lattice parameters c > a = b to orthorhombic with c > a > b. At almost the same temperature, Fe spins in SrFe2As2 develop a collinear antiferromagnetic structure along the orthorhombic a-axis with spin direction parallel to this a-axis. These results are consistent with earlier work on the RFeAsO (R = rare earth elements) families of materials and on BaFe2As2, and therefore suggest that static antiferromagnetic order is ubiquitous for the parent compound of these FeAs-based high-transition temperature superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا