ترغب بنشر مسار تعليمي؟ اضغط هنا

Upper critical fields and thermally-activated transport of Nd(O_0.7F_0.3)FeAs single crystal

165   0   0.0 ( 0 )
 نشر من قبل Jan J. Jaroszynski
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present measurements of the resistivity and the upper critical field H_c2 of Nd(O_0.7F_0.3)FeAs single crystals in strong DC and pulsed magnetic fields up to 45 T and 60 T, respectively. We found that the field scale of H_c2 is comparable to ~100 T of high T_c cuprates. H_c2(T) parallel to the c-axis exhibits a pronounced upward curvature similar to what was extracted from earlier measurements on polycrystalline samples. Thus this behavior is indeed an intrinsic feature of oxypnictides, rather than manifestation of vortex lattice melting or granularity. The orientational dependence of H_c2 shows deviations from the one-band Ginzburg-Landau scaling. The mass anisotropy decreases as T decreases, from 9.2 at 44K to 5 at 34K. Spin dependent magnetoresistance and nonlinearities in the Hall coefficient suggest contribution to the conductivity from electron-electron interactions modified by disorder reminiscent that of diluted magnetic semiconductors. The Ohmic resistivity measured below T_c but above the irreversibility field exhibits a clear Arrhenius thermally activated behavior over 4-5 decades. The activation energy has very different field dependencies for H||ab and Hperp ab. We discuss to what extent different pairing scenarios can manifest themselves in the observed behavior of H_{c2}, using the two-band model of superconductivity. The results indicate the importance of paramagnetic effects on H_c2(T),which may significantly reduce H_c2(0) as compared toH_c2(0)~200-300 T based on extrapolations of H_c2(T) near T_c down to low temperatures.



قيم البحث

اقرأ أيضاً

The transport properties, upper critical fields, superconducting anisotropy, and critical current density in an iso-valent phosphorus-doped BaFe2As2 single crystal close to optimum doping are investigated in this report. Temperature dependent resisti vity and susceptibility show a superconducting transition temperature, Tc, just below 31 K both with sharp transitions. The upper critical field parallel to the ab-plane, Hc2^ab, is above 77 Tesla while that along the c-axis direction, Hc2^c, is just above 36 Tesla, yielding a low superconducting anisotropy ratio ~ 2. The estimated inter-plane coherence length based on the Ginzburg-Landau (G-L) theory indicates BaFe2(As0.68P0.32)2 is still above the point for a dimensional crossover inferring the superconducting layers are not weakly-coupled in this system. The critical current density at 5 K obtained from magnetization loops measurement show a modest Jc as high as 10^5 A/cm2.
Superconductivity of Ca1-xLaxFe2As2 single crystals with various doping level were investigated via electromagnetic measurements for out-plane (H//c) and in-plane (H//ab) directions. Obvious double superconducting transitions, which can survive in ma gnetic fields up to several Tesla, were observed in the medium-doped (x = 0.13) sample. Two kinds of distinct Hc2 phase diagrams were established for the low superconducting phase with Tc lower than 15 K and the high superconducting phase with Tc of over 40 K, respectively. Both the two kinds of phase diagrams exist in the medium-doped sample. Unusual upward curvature near Tc was observed in Hc2 phase diagrams and analyzed in detail. Temperature dependences of anisotropy for different doping concentrations were obtained and compared. Both superconducting phases manifest extremely large anisotropies, which may originate from the interface or intercalation superconductivity.
Through a direct comparison of specific heat and magneto-resistance we critically asses the nature of superconducting fluctuations in the same nano-gram crystal of SmFeAs(O, F). We show that although the superconducting fluctuation contribution to co nductivity scales well within the 2D-LLL scheme its predictions contrast the inherently 3D nature of SmFeAs(O, F) in the vicinity T_{c}. Furthermore the transition seen in specific heat cannot be satisfactory described either by the LLL or the XY scaling. Additionally we have validated, through comparing Hc2 values obtained from the entropy conservation construction (Hab=-19.5 T/K and Hab=-2.9 T/K), the analysis of fluctuation contribution to conductivity as a reasonable method for estimating the Hc2 slope.
We studied the specific heat and thermal conductivity of the spin-triplet superconductor Sr2RuO4 at low temperatures and under oriented magnetic fields H. We resolved a double peak structure of the superconducting transition under magnetic field for the first time, which provides thermodynamic evidence for the existence of multiple superconducting phases. We also found a clear limiting of the upper critical field Hc2 for the field direction parallel to the RuO2 plane only within 2 degrees. The limiting of Hc2 occurs in the same H-T domain of the second superconducting phase; we suggest that the two phenomena have the same physical origin.
We report resistivity and upper critical field B_c2(T) data for disordered (As deficient) LaO_0.9F_0.1FeAs_1-delta in a wide temperature and high field range up to 60 T. These samples exhibit a slightly enhanced superconducting transition at T_c = 28 .5 K and a significantly enlarged slope dB_c2/dT = -5.4 T/K near T_c which contrasts with a flattening of B_c2(T) starting near 23 K above 30 T. The latter evidences Pauli limiting behaviour (PLB) with B_c2(0) approximately 63 T. We compare our results with B_c2(T)-data from the literature for clean and disordered samples. Whereas clean samples show almost no PLB for fields below 60 to 70 T, the hitherto unexplained pronounced flattening of B_c2(T) for applied fields H II ab observed for several disordered closely related systems is interpreted also as a manifestation of PLB. Consequences are discussed in terms of disorder effects within the frames of (un)conventional superconductivity, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا