ﻻ يوجد ملخص باللغة العربية
String theory/M-theory generally predicts that axionic fields with a broad mass spectrum extending below 10^{-10}eV are produced after compactification to four dimensions. These axions/fields provoke a rich variety of cosmophysical phenomena on different scales depending on their masses and provide us new windows to probe the ultimate theory. In this article, after overviewing this axiverse idea, I take up the black hole instability as the most fascinating one among such axionic phenomena and explain its physical mechanism and astrophysical predictions.
It has recently been suggested that the presence of a plenitude of light axions, an Axiverse, is evidence for the extra dimensions of string theory. We discuss the observational consequences of these axions on astrophysical black holes through the Pe
The process of superradiance can extract angular momentum and energy from astrophysical black holes (BHs) to populate gravitationally-bound states with an exponentially large number of light bosons. We analytically calculate superradiant growth rates
Black hole superradiance is a powerful probe of light, weakly-coupled hidden sector particles. Many candidate particles, such as axions, generically have self-interactions that can influence the evolution of the superradiant instability. As pointed o
We remind that the ring down features observed in the LIGO GWs resulted from trembling of photon spheres (Rp=3M) of newly formed compact objects and not from the trembling of their event horizons (R=2M). Further, the tentative evidences for late time
It is widely believed that axions are ubiquitous in string theory and could be the dark matter. The peculiar features of the axion dark matter are coherent oscillations and a coupling to the electromagnetic field through the Chern-Simons term. In thi