ﻻ يوجد ملخص باللغة العربية
The process of superradiance can extract angular momentum and energy from astrophysical black holes (BHs) to populate gravitationally-bound states with an exponentially large number of light bosons. We analytically calculate superradiant growth rates for vectors around rotating BHs in the regime where the vector Compton wavelength is much larger than the BH size. Spin-1 bound states have superradiance times as short as a second around stellar BHs, growing up to a thou- sand times faster than their spin-0 counterparts. The fast rates allow us to use measurements of rapidly spinning BHs in X-ray binaries to exclude a wide range of masses for weakly-coupled spin-1 particles, $5 times 10^{-14} - 2 times 10^{-11}$ eV; lighter masses in the range $6 times 10^{-20} - 2 times 10^{-17}$ eV start to be constrained by supermassive BH spin measurements at a lower level of confidence. We also explore routes to detection of new vector particles possible with the advent of gravitational wave (GW) astronomy. The LIGO-Virgo collaboration could discover hints of a new light vector particle in statistical analyses of masses and spins of merging BHs. Vector annihilations source continuous monochromatic gravitational radiation which could be observed by current GW observatories. At design sensitivity, Advanced LIGO may measure up to thousands of annihilation signals from within the Milky Way, while hundreds of BHs born in binary mergers across the observable universe may superradiate vector bound states and become new beacons of monochromatic gravitational waves.
Black hole superradiance is a powerful probe of light, weakly-coupled hidden sector particles. Many candidate particles, such as axions, generically have self-interactions that can influence the evolution of the superradiant instability. As pointed o
We study the gravitational-wave (GW) signatures of clouds of ultralight bosons around black holes (BHs) in binary inspirals. These clouds, which are formed via superradiance instabilities for rapidly rotating BHs, produce distinct effects in the popu
String theory/M-theory generally predicts that axionic fields with a broad mass spectrum extending below 10^{-10}eV are produced after compactification to four dimensions. These axions/fields provoke a rich variety of cosmophysical phenomena on diffe
Primordial black holes (PBHs) are a potential dark matter candidate whose masses can span over many orders of magnitude. If they have masses in the $10^{15}-10^{17}$ g range, they can emit sizeable fluxes of MeV neutrinos through evaporation via Hawk
The circumgalactic medium (CGM) encodes signatures of the galaxy-formation process, including the interaction of galactic outflows driven by stellar and supermassive black hole (SMBH) feedback with the gaseous halo. Moving beyond spherically symmetri