ﻻ يوجد ملخص باللغة العربية
It is widely believed that axions are ubiquitous in string theory and could be the dark matter. The peculiar features of the axion dark matter are coherent oscillations and a coupling to the electromagnetic field through the Chern-Simons term. In this paper, we study consequences of these two features of the axion with the mass in a range from $10^{-13},{rm eV}$ to $10^{3},{rm eV}$. First, we study the parametric resonance of electromagnetic waves induced by the coherent oscillation of the axion. As a result of the resonance, the amplitude of the electromagnetic waves is enhanced and the circularly polarized monochromatic waves will be generated. Second, we study the velocity of light in the background of the axion dark matter. In the presence of the Chern-Simons term, the dispersion relation is modified and the speed of light will oscillate in time. It turns out that the change of speed of light would be difficult to observe. We argue that the future radio wave observations of the resonance can give rise to a stronger constraint on the coupling constant and/or the density of the axion dark matter.
It has recently been suggested that the presence of a plenitude of light axions, an Axiverse, is evidence for the extra dimensions of string theory. We discuss the observational consequences of these axions on astrophysical black holes through the Pe
String theory/M-theory generally predicts that axionic fields with a broad mass spectrum extending below 10^{-10}eV are produced after compactification to four dimensions. These axions/fields provoke a rich variety of cosmophysical phenomena on diffe
First results from the Parker Solar Probe (PSP) mission have revealed ubiquitous coherent ion-scale waves in the inner heliosphere, which are signatures of kinetic wave-particle interactions and fluid-scale instabilities. However, initial studies of
A review of various aspects of superstrings in background electromagnetic fields is presented. Topics covered include the Born-Infeld action, spectrum of open strings in background gauge fields, the Schwinger mechanism, finite-temperature formalism a
We reconsider the problem of the birefringence of electromagnetic (EM) waves in a medium consisting of a plasma and a $ ubar{ u}$-gas within the Standard Model of particle physics. The considered effect arises in such a medium due to the parity viola