ﻻ يوجد ملخص باللغة العربية
We apply a recently developed quasiparticle self-consistent $GW$ method (QSGW) to Gd, Er, EuN, GdN, ErAs, YbN and GdAs. We show that QSGW combines advantages separately found in conventional $GW$ and LDA+$U$ theory, in a simple and fully emph{ab initio} way. qsgw reproduces the experimental occupied $4f$ levels well, though unoccupied levels are systematically overestimated. Properties of the Fermi surface responsible for electronic properties are in good agreement with available experimental data. GdN is predicted to be very near a critical point of a first-order metal-insulator transition.
We review the formalisms of the self-consistent GW approximation to many-body perturbation theory and of the generation of optimally-localized Wannier functions from groups of energy bands. We show that the quasiparticle Bloch wave functions from suc
We have implemented the so called GW approximation (GWA) based on an all-electron full-potential Projector Augmented Wave (PAW) method. For the screening of the Coulomb interaction W we tested three different plasmon-pole dielectric function models,
A new implementation of the GW approximation (GWA) based on the all-electron Projector-Augmented-Wave method (PAW) is presented, where the screened Coulomb interaction is computed within the Random Phase Approximation (RPA) instead of the plasmon-pol
We study the spectral function of the homogeneous electron gas using many-body perturbation theory and the cumulant expansion. We compute the angle-resolved spectral function based on the GW approximation and the `GW plus cumulant approach. In agreem
We present an implementaion of interface between the full-potential linearized augmented plane wave package Wien2k and the wannier90 code for the construction of maximally localized Wannier functions. The FORTRAN code and a documentation is made avai