ترغب بنشر مسار تعليمي؟ اضغط هنا

Triangulating tunneling resonances in a point contact

187   0   0.0 ( 0 )
 نشر من قبل Nathaniel Bishop
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We observe resonant tunneling in silicon split gate point contacts implanted with antimony and defined in a self-aligned poly-silicon double gate enhancement mode Si-MOS device structure. We identify which resonances are likely candidates for transport through the antimony donor as opposed to unintentional disorder induced potentials using capacitance triangulation. We determine the capacitances from the resonant feature to each of the conducting gates and the source/drain two dimensional electron gas regions. In our device geometry, these capacitances provide information about the resonance location in three dimensions. Semi-classical electrostatic simulations of capacitance, already used to map quantum dot size and position, identify a combination of location and confinement potential size that satisfy our experimental observations. The sensitivity of simulation to position and size allow us to triangulate possible locations of the resonant level with nanometer resolution. We discuss our results and how they may apply to resonant tunneling through a single donor.



قيم البحث

اقرأ أيضاً

We observe individual tunnel events of a single electron between a quantum dot and a reservoir, using a nearby quantum point contact (QPC) as a charge meter. The QPC is capacitively coupled to the dot, and the QPC conductance changes by about 1% if t he number of electrons on the dot changes by one. The QPC is voltage biased and the current is monitored with an IV-convertor at room temperature. We can resolve tunnel events separated by only 8 $mu$s, limited by noise from the IV-convertor. Shot noise in the QPC sets a 25 ns lower bound on the accessible timescales.
We theoretically study the conditional counting statistics of electron transport through a system consisting of a single quantum dot (SQD) or coherently coupled double quantum dots (DQDs) monitored by a nearby quantum point contact (QPC) using the ge nerating functional approach with the maximum eigenvalue of the evolution equation matrix method, the quantum trajectory theory method (Monte Carlo method), and an efficient method we develop. The conditional current cumulants that are significantly different from their unconditional counterparts can provide additional information and insight into the electron transport properties of mesoscopic nanostructure systems. The efficient method we develop for calculating the conditional counting statistics is numerically stable, and is capable of calculating the conditional counting statistics for a more complex system than the maximum eigenvalue method and for a wider range of parameters than the quantum trajectory method. We apply our method to investigate how the QPC shot noise affects the conditional counting statistics of the SQD system, going beyond the treatment and parameter regime studied in the literature. We also investigate the case when the interdot coherent coupling is comparable to the dephasing rate caused by the back action of the QPC in the DQD system, in which there is considerable discrepancy in the calculated conditional current cumulants between the population rate (master-) equation approach of sequential tunneling and the full quantum master-equation approach of coherent tunneling.
We demonstrate a scanning gate grid measurement technique consisting in measuring the conductance of a quantum point contact (QPC) as a function of gate voltage at each tip position. Unlike conventional scanning gate experiments, it allows investigat ing QPC conductance plateaus affected by the tip at these positions. We compensate the capacitive coupling of the tip to the QPC and discover that interference fringes coexist with distorted QPC plateaus. We spatially resolve the mode structure for each plateau.
We study transport of noninteracting fermions through a periodically driven quantum point contact (QPC) connecting two tight-binding chains. Initially, each chain is prepared in its own equilibrium state, generally with a bias in chemical potentials and temperatures. We examine the heating rate (or, alternatively, energy increase per cycle) in the nonequilibrium time-periodic steady state established after initial transient dynamics. We find that the heating rate vanishes identically when the driving frequency exceeds the bandwidth of the chain. We first establish this fact for a particular type of QPC where the heating rate can be calculated analytically. Then we verify numerically that this nonequilibrium phase transition is present for a generic QPC. Finally, we derive this effect perturbatively in leading order for cases when the QPC Hamiltonian can be considered as a small perturbation. Strikingly, we discover that for certain QPCs the current averaged over the driving cycle also vanishes above the critical frequency, despite a persistent bias. This shows that a driven QPC can act as a frequency-controlled quantum switch.
We report a systematic study of the contact resistance present at the interface between a metal (Ti) and graphene layers of different, known thickness. By comparing devices fabricated on 11 graphene flakes we demonstrate that the contact resistance i s quantitatively the same for single-, bi-, and tri-layer graphene ($sim800 pm 200 Omega mu m$), and is in all cases independent of gate voltage and temperature. We argue that the observed behavior is due to charge transfer from the metal, causing the Fermi level in the graphene region under the contacts to shift far away from the charge neutrality point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا