ترغب بنشر مسار تعليمي؟ اضغط هنا

Mode specific backscattering in a quantum point contact

74   0   0.0 ( 0 )
 نشر من قبل Aleksey Kozikov
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate a scanning gate grid measurement technique consisting in measuring the conductance of a quantum point contact (QPC) as a function of gate voltage at each tip position. Unlike conventional scanning gate experiments, it allows investigating QPC conductance plateaus affected by the tip at these positions. We compensate the capacitive coupling of the tip to the QPC and discover that interference fringes coexist with distorted QPC plateaus. We spatially resolve the mode structure for each plateau.

قيم البحث

اقرأ أيضاً

A counter-intuitive disappearance of the giant terahertz photoconductance of a quantum point contact (QPC) under increase in the photon energy, which was discovered experimentally (Otteneder et al., Phys. Rev. Applied 10 (2018) 014015) and studied by the numerical calculations of the photon-stimulated transport (O.A. Tkachenko et al., JETP Lett. 108 (2018) 396), is explained here by using qualitative considerations about the momentum conservation upon absorption of terahertz photons. The spectra of photon-stimulated transmission through a smooth one-dimensional barrier are calculated on the basis of the perturbation theory. These calculations also predict the spectral maxima for optical transitions from the Fermi level to the top of the potential barrier. Within the proposed physical picture, the widths of the spectral maxima are estimated, and the evolution of the shape of the spectra with a change in the position of the Fermi level is qualitatively explained.
The unique properties of quantum Hall devices arise from the ideal one-dimensional edge states that form in a two-dimensional electron system at high magnetic field. Tunnelling between edge states across a quantum point contact (QPC) has already reve aled rich physics, like fractionally charged excitations, or chiral Luttinger liquid. Thanks to scanning gate microscopy, we show that a single QPC can turn into an interferometer for specific potential landscapes. Spectroscopy, magnetic field and temperature dependences of electron transport reveal a quantitatively consistent interferometric behavior of the studied QPC. To explain this unexpected behavior, we put forward a new model which relies on the presence of a quantum Hall island at the centre of the constriction as well as on different tunnelling paths surrounding the island, thereby creating a new type of interferometer. This work sets the ground for new device concepts based on coherent tunnelling.
Electron charge transport through a quantum point contact (QPC) driven by an asymmetric spin bias is studied. A large charge current is induced when the transmission coefficient of the QPC jumps from one integer plateau to the next. Furthermore, for an open external circuit, the induced charge bias instead of the charge current is found to be quite large. It provides an efficient and practical way to detect spin bias by using a very simple device, a QPC or a STM tip. In addition, with the aid of magnetic field, polarization direction of the spin bias can also be determined.
77 - B. Brun , F. Martins , S. Faniel 2018
We introduce a new scanning probe technique derived from scanning gate microscopy (SGM) in order to investigate thermoelectric transport in two-dimensional semiconductor devices. The thermoelectric scanning gate Microscopy (TSGM) consists in measurin g the thermoelectric voltage induced by a temperature difference across a device, while scanning a polarized tip that locally changes the potential landscape. We apply this technique to perform interferometry of the thermoelectric transport in a quantum point contact (QPC). We observe an interference pattern both in SGM and TSGM images, and evidence large differences between the two signals in the low density regime of the QPC. In particular, a large phase jump appears in the interference fringes recorded by TSGM, which is not visible in SGM. We discuss this difference of sensitivity using a microscopic model of the experiment, based on the contribution from a resonant level inside or close to the QPC. This work demonstrates that combining scanning gate microscopy with thermoelectric measurements offers new information as compared to SGM, and provides a direct access to the derivative of the device transmission with respect to energy, both in amplitude and in phase.
We calculate the conductance of a ballistic point contact to a superconducting wire, produced by the s-wave proximity effect in a semiconductor with spin-orbit coupling in a parallel magnetic field. The conductance G as a function of contact width or Fermi energy shows plateaus at half-integer multiples of 4e^2/h if the superconductor is in a topologically nontrivial phase. In contrast, the plateaus are at the usual integer multiples in the topologically trivial phase. Disorder destroys all plateaus except the first, which remains precisely quantized, consistent with previous results for a tunnel contact. The advantage of a ballistic contact over a tunnel contact as a probe of the topological phase is the strongly reduced sensitivity to finite voltage or temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا