ﻻ يوجد ملخص باللغة العربية
In this Letter we describe a new two-mode system, which consists of Kerr-like medium and down conversion process, called the Kerr-down conversion system. Under a certain condition we can obtain an exact solution of the dynamical equations of motion. For this system we investigate different kinds of quadrature squeezing, e.g., single-mode, two-mode and sum-squeezing. Also we give a more general definition of the principal squeezing. We show that the amounts of nonclassical effects produced by the Kerr-like and down-conversion processes separately are greater than those obtained from the Kerr-down conversion system where both the processes are in competition.
Triplet down conversion, the process of converting one high-energy photon into three low-energy photons, may soon be experimentally feasible due to advances in optical resonator technology. We use quantum phase-space techniques to analyse the process
We propose an experimentally accessible superconducting quantum circuit, consisting of two coplanar waveguide resonators (CWRs), to enhance the microwave squeezing via parametric down-conversion (PDC). In our scheme, the two CWRs are nonlinearly coup
The correlation properties of the pump field in spontaneous parametric down-conversion are crucial in determining the degree of entanglement of generated signal and idler photons. We find theoretically that continuous-variable entanglement of the tra
Spontaneous Parametric Down-Conversion (SPDC), also known as parametric fluorescence, parametric noise, parametric scattering and all various combinations of the abbreviation SPDC, is a non-linear optical process where a photon spontaneously splits i
In ultra- and deep-strong cavity quantum electrodynamics (QED) systems, many intriguing phenomena that do not conserve the excitation number are expected to occur. In this study, we theoretically analyze the optical response of an ultrastrong cavity-