ترغب بنشر مسار تعليمي؟ اضغط هنا

Deterministic three-photon down-conversion by a passive ultrastrong cavity-QED system

87   0   0.0 ( 0 )
 نشر من قبل Kazuki Koshino
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In ultra- and deep-strong cavity quantum electrodynamics (QED) systems, many intriguing phenomena that do not conserve the excitation number are expected to occur. In this study, we theoretically analyze the optical response of an ultrastrong cavity-QED system in which an atom is coupled to the fundamental and third harmonic modes of a cavity, and report the possibility of deterministic three-photon down-conversion of itinerant photons upon reflection at the cavity. In the conventional parametric down-conversion, a strong input field is needed because of the smallness of the transition matrix elements of the higher order processes. However, if we use an atom-cavity system in an unprecedentedly strong-coupling region, even a weak field in the linear-response regime is sufficient to cause this rare event involving the fourth order transitions.



قيم البحث

اقرأ أيضاً

We propose a new method for frequency conversion of photons which is both versatile and deterministic. We show that a system with two resonators ultrastrongly coupled to a single qubit can be used to realize both single- and multiphoton frequency-con version processes. The conversion can be exquisitely controlled by tuning the qubit frequency to bring the desired frequency-conversion transitions on or off resonance. Considering recent experimental advances in ultrastrong coupling for circuit QED and other systems, we believe that our scheme can be implemented using available technology.
When an atom is strongly coupled to a cavity, the two systems can exchange a single photon through a coherent Rabi oscillation. This process enables precise quantum-state engineering and manipulation of atoms and photons in a cavity, which play a cen tral role in quantum information and measurement. Recently, a new regime of cavity QED has been reached experimentally where the strength of the interaction between light and artificial atoms (qubits) becomes comparable to the atomic transition frequency or the resonance frequency of the cavity mode. Here we show that this regime can strongly modify the concept of vacuum Rabi oscillations, enabling multiphoton exchanges between the qubit and the resonator. We find that experimental state-of-the-art circuit- QED systems can undergo two- and three-photon vacuum Rabi oscillations. These anomalous Rabi oscillations can be exploited for the realization of efficient Fock-state sources of light and complex entangled states of qubits.
Gauge invariance is the cornerstone of modern quantum field theory. Recently, it has been shown that the quantum Rabi model, describing the dipolar coupling between a two-level atom and a quantized electromagnetic field, violates this principle. This widely used model describes a plethora of quantum systems and physical processes under different interaction regimes. In the ultrastrong coupling regime, it provides predictions which drastically depend on the chosen gauge. This failure is attributed to the finite-level truncation of the matter system. We show that a careful application of the gauge principle is able to restore gauge invariance even for extreme light-matter interaction regimes. The resulting quantum Rabi Hamiltonian in the Coulomb gauge differs significantly from the standard model and provides the same physical results obtained by using the dipole gauge. It contains field operators to all orders that cannot be neglected when the coupling strength is high. These results shed light on subtleties of gauge invariance in nonperturbative and extreme interaction regimes, which are now experimentally accessible, and solve all the long-lasting controversies arising from gauge ambiguities in the quantum Rabi and Dicke models.
213 - Ci. Li , Zhi. Song 2015
We study the scattering problem of photon and polariton in a one-dimensional coupled-cavity system. Analytical approximate analysis and numerical simulation show that a photon can stimulate the photon emission from a polariton through polariton-photo n collisions. This observation opens the possibility of photon-stimulated transition from insulating to radiative phase in a coupled-cavity QED system. Inversely, we also find that a polariton can be generated by a two-photon Raman scattering process. This paves the way towards single photon storage by the aid of atom-cavity interaction.
By driving a dispersively coupled qubit-resonator system, we realize an impedance-matched $Lambda$ system that has two identical radiative decay rates from the top level and interacts with a semi-infinite waveguide. It has been predicted that a photo n input from the waveguide deterministically induces a Raman transition in the system and switches its electronic state. We confirm this through microwave response to a continuous probe field, observing near-perfect ($99.7%$) extinction of the reflection and highly efficient ($74%$) frequency down-conversion. These proof-of-principle results lead to deterministic quantum gates between material qubits and microwave photons and open the possibility for scalable quantum networks interconnected with waveguide photons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا