ﻻ يوجد ملخص باللغة العربية
We report theoretical calculations of high-order harmonic generation (HHG) of Xe with the inclusion of multi-electron effects and macroscopic propagation of the fundamental and harmonic fields in an ionizing medium. By using the time-frequency analysis we show that the reshaping of the fundamental laser field is responsible for the continuum structure in the HHG spectra. We further suggest a method for obtaining an isolated attosecond pulse (IAP) by using a filter centered on axis to select the harmonics in the far field with different divergence. We also discuss the carrier-envelope-phase dependence of an IAP and the possibility to optimize the yield of the IAP. With the intense few-cycle mid-infrared lasers, this offers a possible method for generating isolated attosecond pulses.
We present experimental results showing the appearance of a near-continuum in the high-order harmonic generation (HHG) spectra of atomic and molecular species as the driving laser intensity of an infrared pulse increases. Detailed macroscopic simulat
A new method for efficiently generating an isolated single-cycle attosecond pulse is proposed. It is shown that the ultraviolet (UV) attosecond pulse can be utilized as a robust tool to control the dynamics of electron wave packets (EWPs). By adding
High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest attosecond (as) pulses have been produced only in the extreme ultraviolet (EUV) region o
We show that high-order harmonics generated from molecules by intense laser pulses can be expressed as the product of a returning electron wave packet and the photo-recombination cross section (PRCS) where the electron wave packet can be obtained fro
Laser-plasma electron accelerators can be used to produce high-intensity X-rays, as electrons accelerated in wakefields emit radiation due to betatron oscillations.Such X-ray sources inherit the features of the electron beam; sub-femtosecond electron