ترغب بنشر مسار تعليمي؟ اضغط هنا

X-rays and hard UV radiation From the First Galaxies: Ionization Bubbles and 21 cm Observations

45   0   0.0 ( 0 )
 نشر من قبل Aparna Venkatesan
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Aparna Venkatesan




اسأل ChatGPT حول البحث

The first stars and quasars are known sources of hard ionizing radiation in the first billion years of the Universe. We examine the joint effects of X-rays and hard UV radiation from such first-light sources on the hydrogen and helium reionization of the intergalactic medium (IGM) at early times, and the associated heating. We study the growth and evolution of individual HII, HeII and HeIII regions around early galaxies with first stars and/or QSO populations. We find that in the presence of helium-ionizing radiation, X-rays may not dominate the ionization and thermal history of the IGM at redshifts, z, of 10-20, contributing relatively modest increases to IGM ionization, and heating up to about 10^3--10^5 K in IGM temperatures. We also calculate the 21 cm signal expected from a number of scenarios with metal-free starbursts and quasars at these redshifts. The peak values for the spin temperature reach about 10^4 to 10^5 K in such cases. The maximum values for the 21 cm brightness temperature are around 30-40 mK in emission, while the net values of the 21 cm absorption signal range from about a few to 60 mK on scales of 0.01-1 Mpc. We find that the 21 cm signature of X-ray versus UV ionization could be distinct, with the emission signal expected from X-rays alone occurring at smaller scales than that from UV radiation, resulting from the inherently different spatial scales at which X-ray and UV ionization/heating manifest. This difference is time-dependent, and becomes harder to distinguish with an increasing X-ray contribution to the total ionizing photon production. Such differing scale-dependent contributions from X-ray and UV photons may therefore blur the 21 cm signature of the percolation of ionized bubbles around early halos (depending on whether a cosmic X-ray or UV background built up first), and affect the interpretation of 21 cm data constraints on reionization.

قيم البحث

اقرأ أيضاً

76 - Jaehong Park 2019
Next generation observatories will enable us to study the first billion years of our Universe in unprecedented detail. Foremost among these are 21-cm interferometry with the HERA and the SKA, and high-$z$ galaxy observations with the James Webb Space Telescope (JWST). Taking a basic galaxy model, in which we allow the star formation rates and ionizing escape fractions to have a power-law dependence on halo mass with an exponential turnover below some threshold, we quantify how observations from these instruments can be used to constrain the astrophysics of high-$z$ galaxies. For this purpose, we generate mock JWST LFs, based on two different hydrodynamical cosmological simulations; these have intrinsic luminosity functions (LFs) which turn over at different scales and yet are fully consistent with present-day observations. We also generate mock 21-cm power spectrum observations, using 1000h observations with SKA1 and a moderate foreground model. Using only JWST data, we predict up to a factor of 2-3 improvement (compared with HST) in the fractional uncertainty of the star formation rate to halo mass relation and the scales at which the LFs peak (i.e. turnover). Most parameters regulating the UV galaxy properties can be constrained at the level of $sim 10$% or better, if either (i) we are able to better characterize systematic lensing uncertainties than currently possible; or (ii) the intrinsic LFs peak at magnitudes brighter than $M_{rm UV} lesssim -13$. Otherwise, improvement over HST-based inference is modest. When combining with upcoming 21-cm observations, we are able to significantly mitigate degeneracies, and constrain all of our astrophysical parameters, even for our most pessimistic assumptions about upcoming JWST LFs. The 21-cm observations also result in an order of magnitude improvement in constraints on the EoR history.
Dark matter interactions with massless or very light Standard Model particles, as photons or neutrinos, may lead to a suppression of the matter power spectrum at small scales and of the number of low mass haloes. Bounds on the dark matter scattering cross section with light degrees of freedom in such interacting dark matter (IDM) scenarios have been obtained from e.g. early time cosmic microwave background physics and large scale structure observations. Here we scrutinize dark matter microphysics in light of the claimed 21 cm EDGES 78 MHz absorption signal. IDM is expected to delay the 21 cm absorption features due to collisional damping effects. We identify the astrophysical conditions under which the existing constraints on the dark matter scattering cross section could be largely improved due to the IDM imprint on the 21 cm signal, providing also an explicit comparison to the WDM scenario.
We introduce a novel class of signatures---spectral edges and endpoints---in 21-cm measurements resulting from interactions between the standard and dark sectors. Within the context of a kinetically mixed dark photon, we demonstrate how resonant dark photon-to-photon
We report upper-limits on the Epoch of Reionization (EoR) 21 cm power spectrum at redshifts 7.9 and 10.4 with 18 nights of data ($sim36$ hours of integration) from Phase I of the Hydrogen Epoch of Reionization Array (HERA). The Phase I data show evid ence for systematics that can be largely suppressed with systematic models down to a dynamic range of $sim10^9$ with respect to the peak foreground power. This yields a 95% confidence upper limit on the 21 cm power spectrum of $Delta^2_{21} le (30.76)^2 {rm mK}^2$ at $k=0.192 h {rm Mpc}^{-1}$ at $z=7.9$, and also $Delta^2_{21} le (95.74)^2 {rm mK}^2$ at $k=0.256 h {rm Mpc}^{-1}$ at $z=10.4$. At $z=7.9$, these limits are the most sensitive to-date by over an order of magnitude. While we find evidence for residual systematics at low line-of-sight Fourier $k_parallel$ modes, at high $k_parallel$ modes we find our data to be largely consistent with thermal noise, an indicator that the system could benefit from deeper integrations. The observed systematics could be due to radio frequency interference, cable sub-reflections, or residual instrumental cross-coupling, and warrant further study. This analysis emphasizes algorithms that have minimal inherent signal loss, although we do perform a careful accounting in a companion paper of the small forms of loss or bias associated with the pipeline. Overall, these results are a promising first step in the development of a tuned, instrument-specific analysis pipeline for HERA, particularly as Phase II construction is completed en route to reaching the full sensitivity of the experiment.
Observations of the redshifted 21-cm signal (in absorption or emission) allow us to peek into the epoch of dark ages and the onset of reionization. These data can provide a novel way to learn about the nature of dark matter, in particular about the f ormation of small size dark matter halos. However, the connection between the formation of structures and 21-cm signal requires knowledge of stellar to total mass relation, escape fraction of UV photons, and other parameters that describe star formation and radiation at early times. This baryonic physics depends on the properties of dark matter and in particular in warm-dark-matter (WDM) models, star formation may follow a completely different scenario, as compared to the cold-dark-matter case. We use the recent measurements by the EDGES [J. D. Bowman, A. E. E. Rogers, R. A. Monsalve, T. J. Mozdzen, and N. Mahesh, An absorption profile centred at 78 megahertz in thesky-averaged spectrum,Nature (London) 555, 67 (2018).] to demonstrate that when taking the above considerations into account, the robust WDM bounds are in fact weaker than those given by the Lyman-$alpha$ forest method and other structure formation bounds. In particular, we show that resonantly produced 7 keV sterile neutrino dark matter model is consistent with these data. However, a holistic approach to modelling of the WDM universe holds great potential and may in the future make 21-cm data our main tool to learn about dark matter clustering properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا