We introduce a novel class of signatures---spectral edges and endpoints---in 21-cm measurements resulting from interactions between the standard and dark sectors. Within the context of a kinetically mixed dark photon, we demonstrate how resonant dark photon-to-photon
Observations of the redshifted 21-cm signal (in absorption or emission) allow us to peek into the epoch of dark ages and the onset of reionization. These data can provide a novel way to learn about the nature of dark matter, in particular about the f
ormation of small size dark matter halos. However, the connection between the formation of structures and 21-cm signal requires knowledge of stellar to total mass relation, escape fraction of UV photons, and other parameters that describe star formation and radiation at early times. This baryonic physics depends on the properties of dark matter and in particular in warm-dark-matter (WDM) models, star formation may follow a completely different scenario, as compared to the cold-dark-matter case. We use the recent measurements by the EDGES [J. D. Bowman, A. E. E. Rogers, R. A. Monsalve, T. J. Mozdzen, and N. Mahesh, An absorption profile centred at 78 megahertz in thesky-averaged spectrum,Nature (London) 555, 67 (2018).] to demonstrate that when taking the above considerations into account, the robust WDM bounds are in fact weaker than those given by the Lyman-$alpha$ forest method and other structure formation bounds. In particular, we show that resonantly produced 7 keV sterile neutrino dark matter model is consistent with these data. However, a holistic approach to modelling of the WDM universe holds great potential and may in the future make 21-cm data our main tool to learn about dark matter clustering properties.
Dark matter interactions with massless or very light Standard Model particles, as photons or neutrinos, may lead to a suppression of the matter power spectrum at small scales and of the number of low mass haloes. Bounds on the dark matter scattering
cross section with light degrees of freedom in such interacting dark matter (IDM) scenarios have been obtained from e.g. early time cosmic microwave background physics and large scale structure observations. Here we scrutinize dark matter microphysics in light of the claimed 21 cm EDGES 78 MHz absorption signal. IDM is expected to delay the 21 cm absorption features due to collisional damping effects. We identify the astrophysical conditions under which the existing constraints on the dark matter scattering cross section could be largely improved due to the IDM imprint on the 21 cm signal, providing also an explicit comparison to the WDM scenario.
The 21-cm absorption feature reported by the EDGES collaboration is several times stronger than that predicted by traditional astrophysical models. If genuine, a deeper absorption may lead to stronger fluctuations on the 21-cm signal on degree scales
(up to 1~Kelvin in rms), allowing these fluctuations to be detectable in nearly 50~times shorter integration times compared to previous predictions. We commenced the AARTFAAC Cosmic Explorer (ACE) program, that employs the AARTFAAC wide-field imager, to measure or set limits on the power spectrum of the 21-cm fluctuations in the redshift range $z = 17.9-18.6$ ($Delta u = 72.36-75.09$~MHz) corresponding to the deep part of the EDGES absorption feature. Here, we present first results from two LST bins: 23.5-23.75h and 23.5-23.75h, each with 2~h of data, recorded in `semi drift-scan mode. We demonstrate the application of the new ACE data-processing pipeline (adapted from the LOFAR-EoR pipeline) on the AARTFAAC data. We observe that noise estimates from the channel and time-differenced Stokes~$V$ visibilities agree with each other. After 2~h of integration and subtraction of bright foregrounds, we obtain $2sigma$ upper limits on the 21-cm power spectrum of $Delta_{21}^2 < (8139~textrm{mK})^2$ and $Delta_{21}^2 < (8549~textrm{mK})^2$ at $k = 0.144~h,textrm{cMpc}^{-1}$ for the two LST bins. Incoherently averaging the noise bias-corrected power spectra for the two LST bins yields an upper limit of $Delta_{21}^2 < (7388~textrm{mK})^2$ at $k = 0.144~h,textrm{cMpc}^{-1}$. These are the deepest upper limits thus far at these redshifts.
The recent observation of the 21-cm global absorption signal by EDGES suggests that the intergalactic medium (IGM) gas has been cooler than the cosmic microwave background during $15 lesssim z lesssim 20$. This result can provide a strong constraint
on heating sources for the IGM gas at these redshifts. In this paper we study the constraint on the primordial magnetic fields (PMFs) by the EDGES result. The PMFs can heat the IGM gas through their energy dissipation due to the magnetohydrodynamic effects. By numerically solving the thermal evolution of the IGM gas with the PMFs, we find that the EDGES result gives a stringent limit on the PMFs as $B_{1mathrm{Mpc}} lesssim 10^{-10}$ G.
The redshifted 21-cm signal of neutral Hydrogen is a promising probe into the period of evolution of our Universe when the first stars were formed (Cosmic Dawn), to the period where the entire Universe changed its state from being completely neutral
to completely ionized (Reionization). The most striking feature of this line of neutral Hydrogen is that it can be observed across an entire frequency range as a sky-averaged continuous signature, or its fluctuations can be measured using an interferometer. However, the 21-cm signal is very faint and is dominated by a much brighter Galactic and extra-galactic foregrounds, making it an observational challenge. We have used different physical models to simulate various realizations of the 21-cm Global signals, including an excess radio background to match the amplitude of the EDGES 21-cm signal. First, we have used an artificial neural network (ANN) to extract the astrophysical parameters from these simulated datasets. Then, mock observations were generated by adding a physically motivated foreground model and an ANN was used to extract the astrophysical parameters from such data. The $R^2$ score of our predictions from the mock-observations is in the range of 0.65-0.89. We have used this ANN to predict the signal parameters giving the EDGES data as the input. We find that the reconstructed signal closely mimics the amplitude of the reported detection. The recovered parameters can be used to infer the physical state of the gas at high redshifts.
Andrea Caputo
,Hongwan Liu
,Siddharth Mishra-Sharma
.
(2020)
.
"Edges and Endpoints in 21-cm Observations from Resonant Photon Production"
.
Siddharth Mishra-Sharma
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا