ﻻ يوجد ملخص باللغة العربية
The $jpsi$ $pt$ spectrum and nuclear modification factor ($raa$) are reported for $pt < 5 gevc$ and $|y|<1$ from 0% to 60% central Au+Au and Cu+Cu collisions at $snn = 200 gev$ at STAR. A significant suppression of $pt$-integrated $jpsi$ production is observed in central Au+Au events. The Cu+Cu data are consistent with no suppression, although the precision is limited by the available statistics. $raa$ in Au+Au collisions exhibits a strong suppression at low transverse momentum and gradually increases with $pt$. The data are compared to high-$pt$ STAR results and previously published BNL Relativistic Heavy Ion Collider results. Comparing with model calculations, it is found that the invariant yields at low $pt$ are significantly above hydrodynamic flow predictions but are consistent with models that include color screening and regeneration.
We report new STAR measurements of mid-rapidity yields for the $Lambda$, $bar{Lambda}$, $K^{0}_{S}$, $Xi^{-}$, $bar{Xi}^{+}$, $Omega^{-}$, $bar{Omega}^{+}$ particles in Cu+Cu collisions at sNN{200}, and mid-rapidity yields for the $Lambda$, $bar{Lamb
We report on $J/psi$ production from asymmetric Cu+Au heavy-ion collisions at $sqrt{s_{_{NN}}}$=200 GeV at the Relativistic Heavy Ion Collider at both forward (Cu-going direction) and backward (Au-going direction) rapidities. The nuclear modification
The azimuthal anisotropic flow of identified and unidentified charged particles has been systematically studied in Cu+Au collisions at $sqrt{s_{_{NN}}}$ = 200 GeV for harmonics $n=$ 1-4 in the pseudorapidity range $|eta|<1$. The directed flow in Cu+A
We present a systematic analysis of two-pion interferometry in Au+Au collisions at $sqrt{s_{rm{NN}}}$ = 62.4 GeV and Cu+Cu collisions at $sqrt{s_{rm{NN}}}$ = 62.4 and 200 GeV using the STAR detector at RHIC. The multiplicity and transverse momentum d
We report first measurements of $e^{+}e^{-}$ pair production in the mass region 0.4 $<M_{ee}<$ 2.6 GeV/$c^{2}$ at low transverse momentum ($p_T<$ 0.15 GeV/$c$) in non-central Au$+$Au collisions at $sqrt{s_{NN}}$ = 200 GeV and U$+$U collisions at $sqr