ﻻ يوجد ملخص باللغة العربية
In this paper, we analyze the effects of expansion on large scale structure formation in our Universe. We do that by incorporating a cosmological constant term in the gravitational partition function. This gravitational partition function with a cosmological constant is used for analyzing the thermodynamics of this system. We analyze the virial expansion for this system, and obtain its equation of state. It is observed that the generalization of this equation of state is like the Van der Waals equation. We also analyze a gravitational phase transition in this system using the mean field theory. We construct the cosmic energy equation for this system of galaxies, and discuss its consequences. We obtain and analyze the distribution function for this system, using the gravitational partition function. We also compare the results obtained in this paper with the observational data.
The Hubble law, determined from the distance modulii and redshifts of galaxies, for the past 80 years, has been used as strong evidence for an expanding universe. This claim is reviewed in light of the claimed lack of necessary evidence for time dila
Our goal is to interpret the energy equation from Doubly Special Relativity (DSR) of Magueijo-Smolin with an invariant Planck energy scale in order to obtain the speed of light with an explicit dependence on the background temperature of the expandin
In the standard picture of cosmological structure formation, the Universe we see today is evolved under the gravitational instability from tiny random fluctuations. In this talk I discuss the onset of non-linearity in the large scale structure format
A short overview is given on the development of our present paradigm of the large scale structure of the Universe with emphasis on the role of Ya. B. Zeldovich. Next we use the Sloan Digital Sky Survey data and show that the distribution of phases of
We show that entanglement can be used to detect spacetime curvature. Quantum fields in the Minkowski vacuum are entangled with respect to local field modes. This entanglement can be swapped to spatially separated quantum systems using standard local