ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of valley splitting in high-symmetry Si/SiGe quantum dots

558   0   0.0 ( 0 )
 نشر من قبل Matthew Borselli
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have demonstrated few-electron quantum dots in Si/SiGe and InGaAs, with occupation number controllable from N = 0. These display a high degree of spatial symmetry and identifiable shell structure. Magnetospectroscopy measurements show that two Si-based devices possess a singlet N =2 ground state at low magnetic field and therefore the two-fold valley degeneracy is lifted. The valley splittings in these two devices were 120 and 270 {mu}eV, suggesting the presence of atomically sharp interfaces in our heterostructures.



قيم البحث

اقرأ أيضاً

We examine energy spectra of Si quantum dots embedded into Si_{0.75}Ge_{0.25} buffers using atomistic numerical calculations for dimensions relevant to qubit implementations. The valley degeneracy of the lowest orbital state is lifted and valley spli tting fluctuates with monolayer frequency as a function of the dot thickness. For dot thicknesses <6 nm valley splitting is found to be >150 ueV. Using the unique advantage of atomistic calculations we analyze the effect of buffer disorder on valley splitting. Disorder in the buffer leads to the suppression of valley splitting by a factor of 2.5, the splitting fluctuates with ~20 ueV for different disorder realizations. Through these simulations we can guide future experiments into regions of low device-to-device fluctuations.
Silicon quantum dot qubits must contend with low-lying valley excited states which are sensitive functions of the quantum well heterostructure and disorder; quantifying and maximizing the energies of these states are critical to improving device perf ormance. We describe a spectroscopic method for probing excited states in isolated Si/SiGe double quantum dots using standard baseband pulsing techniques, easing the extraction of energy spectra in multiple-dot devices. We use this method to measure dozens of valley excited state energies spanning multiple wafers, quantum dots, and orbital states, crucial for evaluating the dependence of valley splitting on quantum well width and other epitaxial conditions. Our results suggest that narrower wells can be beneficial for improving valley splittings, but this effect can be confounded by variations in growth and fabrication conditions. These results underscore the importance of valley splitting measurements for guiding the development of Si qubits.
Silicon-germanium heterostructures have successfully hosted quantum dot qubits, but the intrinsic near-degeneracy of the two lowest valley states poses an obstacle to high fidelity quantum computing. We present a modification to the Si/SiGe heterostr ucture by the inclusion of a spike in germanium concentration within the quantum well in order to increase the valley splitting. The heterostructure is grown by chemical vapor deposition and magnetospectroscopy is performed on gate-defined quantum dots to measure the excited state spectrum. We demonstrate a large and widely tunable valley splitting as a function of applied vertical electric field and lateral dot confinement. We further investigate the role of the germanium spike by means of tight-binding simulations in single-electron dots and show a robust doubling of the valley splitting when the spike is present, as compared to a standard (spike-free) heterostructure. This doubling effect is nearly independent of the electric field, germanium content of the spike, and spike location. This experimental evidence of a stable, tunable quantum dot, despite a drastic change to the heterostructure, provides a foundation for future heterostructure modifications.
We report on a quantum dot device design that combines the low disorder properties of undoped SiGe heterostructure materials with an overlapping gate stack in which each electrostatic gate has a dominant and unique function -- control of individual q uantum dot occupancies and of lateral tunneling into and between dots. Control of the tunneling rate between a dot and an electron bath is demonstrated over more than nine orders of magnitude and independently confirmed by direct measurement within the bandwidth of our amplifiers. The inter-dot tunnel coupling at the (0,2)<-->(1,1) charge configuration anti-crossing is directly measured to quantify the control of a single inter-dot tunnel barrier gate. A simple exponential dependence is sufficient to describe each of these tunneling processes as a function of the controlling gate voltage.
156 - A. Wild , J. Sailer , J. Nutzel 2010
We present an electrostatically defined few-electron double quantum dot (QD) realized in a molecular beam epitaxy grown Si/SiGe heterostructure. Transport and charge spectroscopy with an additional QD as well as pulsed-gate measurements are demonstra ted. We discuss technological challenges specific for silicon-based heterostructures and the effect of a comparably large effective electron mass on transport properties and tunability of the double QD. Charge noise, which might be intrinsically induced due to strain-engineering is proven not to affect the stable operation of our device as a spin qubit. Our results promise the suitability of electrostatically defined QDs in Si/SiGe heterostructures for quantum information processing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا