ترغب بنشر مسار تعليمي؟ اضغط هنا

Detuning Axis Pulsed Spectroscopy of Valley-Orbital States in Si/SiGe Quantum Dots

184   0   0.0 ( 0 )
 نشر من قبل Kate Raach
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Silicon quantum dot qubits must contend with low-lying valley excited states which are sensitive functions of the quantum well heterostructure and disorder; quantifying and maximizing the energies of these states are critical to improving device performance. We describe a spectroscopic method for probing excited states in isolated Si/SiGe double quantum dots using standard baseband pulsing techniques, easing the extraction of energy spectra in multiple-dot devices. We use this method to measure dozens of valley excited state energies spanning multiple wafers, quantum dots, and orbital states, crucial for evaluating the dependence of valley splitting on quantum well width and other epitaxial conditions. Our results suggest that narrower wells can be beneficial for improving valley splittings, but this effect can be confounded by variations in growth and fabrication conditions. These results underscore the importance of valley splitting measurements for guiding the development of Si qubits.

قيم البحث

اقرأ أيضاً

We examine energy spectra of Si quantum dots embedded into Si_{0.75}Ge_{0.25} buffers using atomistic numerical calculations for dimensions relevant to qubit implementations. The valley degeneracy of the lowest orbital state is lifted and valley spli tting fluctuates with monolayer frequency as a function of the dot thickness. For dot thicknesses <6 nm valley splitting is found to be >150 ueV. Using the unique advantage of atomistic calculations we analyze the effect of buffer disorder on valley splitting. Disorder in the buffer leads to the suppression of valley splitting by a factor of 2.5, the splitting fluctuates with ~20 ueV for different disorder realizations. Through these simulations we can guide future experiments into regions of low device-to-device fluctuations.
Silicon-germanium heterostructures have successfully hosted quantum dot qubits, but the intrinsic near-degeneracy of the two lowest valley states poses an obstacle to high fidelity quantum computing. We present a modification to the Si/SiGe heterostr ucture by the inclusion of a spike in germanium concentration within the quantum well in order to increase the valley splitting. The heterostructure is grown by chemical vapor deposition and magnetospectroscopy is performed on gate-defined quantum dots to measure the excited state spectrum. We demonstrate a large and widely tunable valley splitting as a function of applied vertical electric field and lateral dot confinement. We further investigate the role of the germanium spike by means of tight-binding simulations in single-electron dots and show a robust doubling of the valley splitting when the spike is present, as compared to a standard (spike-free) heterostructure. This doubling effect is nearly independent of the electric field, germanium content of the spike, and spike location. This experimental evidence of a stable, tunable quantum dot, despite a drastic change to the heterostructure, provides a foundation for future heterostructure modifications.
Electron spins in silicon quantum dots are promising qubits due to their long coherence times, scalable fabrication, and potential for all-electrical control. However, charge noise in the host semiconductor presents a major obstacle to achieving high -fidelity single- and two-qubit gates in these devices. In this work, we measure the charge-noise spectrum of a Si/SiGe singlet-triplet qubit over more than 13 decades in frequency using a combination of methods, including dynamically-decoupled exchange oscillations with up to 512 $pi$ pulses during the qubit evolution. The charge noise is colored across the entire frequency range of our measurements, although the spectral exponent changes with frequency. Moreover, the charge-noise spectrum inferred from conductance measurements of a proximal sensor quantum dot agrees with that inferred from coherent oscillations of the singlet-triplet qubit, suggesting that simple transport measurements can accurately characterize the charge noise over a wide frequency range in Si/SiGe quantum dots.
Interactions between electrons can strongly affect the shape and functionality of multi-electron quantum dots. The resulting charge distributions can be localized, as in the case of Wigner molecules, with consequences for the energy spectrum and tunn eling to states outside the dot. The situation is even more complicated for silicon dots, due to the interplay between valley, orbital, and interaction energy scales. Here, we study two-electron wavefunctions in electrostatically confined quantum dots formed in a SiGe/Si/SiGe quantum well at zero magnetic field, using a combination of tight-binding and full-configuration-interaction (FCI) methods, and taking into account atomic-scale disorder at the quantum well interface. We model dots based on recent qubit experiments, which straddle the boundary between strongly interacting and weakly interacting systems, and display a rich and diverse range of behaviors. Our calculations show that strong electron-electron interactions, induced by weak confinement, can significantly suppress the low-lying, singlet-triplet (ST) excitation energy. However, when the valley-orbit interactions caused by interfacial disorder are weak, the ST splitting can approach its noninteracting value, even when the electron-electron interactions are strong and Wigner-molecule behavior is observed. These results have important implications for the rational design and fabrication of quantum dot qubits with predictable properties.
We have demonstrated few-electron quantum dots in Si/SiGe and InGaAs, with occupation number controllable from N = 0. These display a high degree of spatial symmetry and identifiable shell structure. Magnetospectroscopy measurements show that two Si- based devices possess a singlet N =2 ground state at low magnetic field and therefore the two-fold valley degeneracy is lifted. The valley splittings in these two devices were 120 and 270 {mu}eV, suggesting the presence of atomically sharp interfaces in our heterostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا