ترغب بنشر مسار تعليمي؟ اضغط هنا

An inspection on the Borel masses relation used in QCD sum rules

64   0   0.0 ( 0 )
 نشر من قبل Bruno Os\\'orio Rodrigues
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we studied the Borel masses relation used in QCDSR calculations. These masses are the parameters of the Borel transform used when the three point function is calculated. We analised an usual and a more general linear relations. We concluded that a general linear relation between these masses provides the best results regarding the standard deviation.


قيم البحث

اقرأ أيضاً

The QCD up- and down-quark masses are determined from an optimized QCD Finite Energy Sum Rule (FESR) involving the correlator of axial-vector current divergences. In the QCD sector this correlator is known to five loop order in perturbative QCD (PQCD ), together with non-perturbative corrections from the quark and gluon condensates. This FESR is designed to reduce considerably the systematic uncertainties arising from the hadronic spectral function. The determination is done in the framework of both fixed order and contour improved perturbation theory. Results from the latter, involving far less systematic uncertainties, are: $bar{m}_u (2, mbox{GeV}) = (2.6 , pm , 0.4) , {mbox{MeV}}$, $bar{m}_d (2, mbox{GeV}) = (5.3 , pm , 0.4) , {mbox{MeV}}$, and the sum $bar{m}_{ud} equiv (bar{m}_u , + , bar{m}_d)/2$, is $bar{m}_{ud}({ 2 ,mbox{GeV}}) =( 3.9 , pm , 0.3 ,) {mbox{MeV}}$.
QCD Laplace sum-rules are used to calculate axial vector $(J^{PC}=1^{++})$ charmonium and bottomonium hybrid masses. Previous sum-rule studies of axial vector heavy quark hybrids did not include the dimension-six gluon condensate, which has been show n to be important in the $1^{--}$ and $0^{-+}$ channels. An updated analysis of axial vector heavy quark hybrids is performed, including the effects of the dimension-six gluon condensate, yielding mass predictions of 5.13 GeV for hybrid charmonium and 11.32 GeV for hybrid bottomonium. The charmonium hybrid mass prediction disfavours a hybrid interpretation of the X(3872), if it has $J^{PC}=1^{++}$, in agreement with the findings of other theoretical approaches. It is noted that QCD sum-rule results for the $1^{--}$, $0^{-+}$ and $1^{++}$ channels are in qualitative agreement with the charmonium hybrid multiplet structure observed in recent lattice calculations.
The light quark masses are determined using a new QCD Finite Energy Sum Rule (FESR) in the pseudoscalar channel. This FESR involves an integration kernel designed to reduce considerably the contribution of the (unmeasured) hadronic resonance spectral functions. The QCD sector of the FESR includes perturbative QCD (PQCD) to five loop order, and the leading non-perturbative terms. In the hadronic sector the dominant contribution is from the pseudoscalar meson pole. Using Contour Improved Perturbation Theory (CIPT) the results for the quark masses at a scale of 2 GeV are $m_u(Q= 2 {GeV}) = 2.9 pm 0.2 {MeV}$, $m_d(Q= 2 {GeV}) = 5.3 pm 0.4 {MeV}$, and $m_s(Q= 2 {GeV}) = 102 pm 8 {MeV}$, for $Lambda = 381 pm 16 {MeV}$, corresponding to $alpha_s(M_tau^2) = 0.344 pm0.009$. In this framework the systematic uncertainty in the quark masses from the unmeasured hadronic resonance spectral function amounts to less than 2 - 3 %. The remaining uncertainties above arise from those in $Lambda$, the unknown six-loop PQCD contribution, and the gluon condensate, which are all potentially subject to improvement.
136 - J. Ho , D. Harnett , T.G. Steele 2016
We use QCD Laplace sum-rules to predict masses of open-flavour heavy-light hybrids where one of the hybrids constituent quarks is a charm or bottom and the other is an up, down, or strange. We compute leading-order, diagonal correlation functions of several hybrid interpolating currents, taking into account QCD condensates up to dimension-six, and extract hybrid mass predictions for all $J^Pin{0^{pm},,1^{pm}}$, as well as explore possible mixing effects with conventional quark-antiquark mesons. Within theoretical uncertainties, our results are consistent with a degeneracy between the heavy-nonstrange and heavy-strange hybrids in all $J^P$ channels. We find a similar mass hierarchy of $1^+$, $1^{-}$, and $0^+$ states (a $1^{+}$ state lighter than essentially degenerate $1^{-}$ and $0^{+}$ states) in both the charm and bottom sectors, and discuss an interpretation for the $0^-$ states. If conventional meson mixing is present the effect is an increase in the hybrid mass prediction, and we estimate an upper bound on this effect.
Constituent mass predictions for axial vector (i.e., $J^P=1^+$) $cc$ and $bb$ colour antitriplet diquarks are generated using QCD Laplace sum-rules. We calculate the diquark correlator within the operator product expansion to NLO, including terms pro portional to the four- and six-dimensional gluon and six-dimensional quark condensates. The sum-rules analyses stabilize, and we find that the mass of the $cc$ diquark is 3.51~GeV and the mass of the $bb$ diquark is 8.67~GeV. Using these diquark masses as inputs, we calculate several tetraquark masses within the Type-II diquark-antidiquark tetraquark model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا