ﻻ يوجد ملخص باللغة العربية
We consider a magnetic moment with an easy axis anisotropy energy, switched by an external field applied along this axis. Additional small, time-independent bias field is applied perpendicular to the axis. It is found that the magnets switching time is a non-monotonic function of the rate at which the field is swept from up to down. Switching time exhibits a minimum at a particular optimal sweep time. This unusual behavior is explained by the admixture of a ballistic (precessional) rotation of the moment caused by the perpendicular bias field in the presence of a variable switching field. We derive analytic expressions for the optimal switching time, and for the entire dependence of the switching time on the field sweep time. The existence of the optimal field sweep time has important implications for the optimization of magnetic memory devices.
We consider a switching of the magnetic moment with an easy axis anisotropy from an up to a down direction under the influence of an external magnetic field. The driving field is applied parallel to the easy axis and is continuously swept from a posi
Voltage-induced magnetization dynamics in a conically magnetized free layer with an elliptic cylinder shape is theoretically studied on the basis of the macrospin model. It is found that an application of voltage pulse can induce the precessional swi
We test whether current-induced magnetization switching due to spin-transfer-torque in ferromagnetic/non-magnetic/ferromagnetic (F/N/F) trilayers changes significantly when scattering within the N-metal layers is changed from ballistic to diffusive.
By tuning the angle between graphene layers to specific magic angles the lowest energy bands of twisted bilayer graphene (TBLG) can be made flat. The flat nature of the bands favors the formation of collective ground states and, in particular, TBLG h
We measured the low temperature specific heat of a sputtered $(Fe_{23AA}/Cr_{12AA})_{33}$ magnetic multilayer, as well as separate $1000AA$ thick Fe and Cr films. Magnetoresistance and magnetization measurements on the multilayer demonstrated antipar