ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced NMR relaxation of Tomonaga-Luttinger liquids and the magnitude of the carbon hyperfine coupling in single-wall carbon nanotubes

127   0   0.0 ( 0 )
 نشر من قبل Ferenc Simon
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent transport measurements [Churchill textit{et al.} Nat. Phys. textbf{5}, 321 (2009)] found a surprisingly large, 2-3 orders of magnitude larger than usual $^{13}$C hyperfine coupling (HFC) in $^{13}$C enriched single-wall carbon nanotubes (SWCNTs). We formulate the theory of the nuclear relaxation time in the framework of the Tomonaga-Luttinger liquid theory to enable the determination of the HFC from recent data by Ihara textit{et al.} [Ihara textit{et al.} EPL textbf{90}, 17004 (2010)]. Though we find that $1/T_1$ is orders of magnitude enhanced with respect to a Fermi-liquid behavior, the HFC has its usual, small value. Then, we reexamine the theoretical description used to extract the HFC from transport experiments and show that similar features could be obtained with HFC-independent system parameters.



قيم البحث

اقرأ أيضاً

147 - Y. Ihara , P. Wzietek , H. Alloul 2009
We report 13C nuclear magnetic resonance measurements on single wall carbon nanotube (SWCNT) bundles. The temperature dependence of the nuclear spin-lattice relaxation rate, 1/T1, exhibits a power-law variation, as expected for a Tomonage-Luttinger l iquid (TLL). The observed exponent is smaller than that expected for the two band TLL model. A departure from the power law is observed only at low T, where thermal and electronic Zeeman energy merge. Extrapolation to zero magnetic field indicates gapless spin excitations. The wide T range on which power-law behavior is observed suggests that SWCNT is so far the best realization of a one-dimensional quantum metal.
133 - B. Dora , M. Gulacsi , J. Koltai 2008
A comprehensive theory of electron spin resonance (ESR) for a Luttinger liquid (LL) state of correlated metals is presented. The ESR measurables such as the signal intensity and the line-width are calculated in the framework of Luttinger liquid theor y with broken spin rotational symmetry as a function of magnetic field and temperature. We obtain a significant temperature dependent homogeneous line-broadening which is related to the spin symmetry breaking and the electron-electron interaction. The result crosses over smoothly to the ESR of itinerant electrons in the non-interacting limit. These findings explain the absence of the long-sought ESR signal of itinerant electrons in single-wall carbon nanotubes when considering realistic experimental conditions.
Recent NMR experiments by Singer et al. [Singer et al. Phys. Rev. Lett. 95, 236403 (2005).] showed a deviation from Fermi-liquid behavior in carbon nanotubes with an energy gap evident at low temperatures. Here, a comprehensive theory for the magneti c field and temperature dependent NMR 13C spin-lattice relaxation is given in the framework of the Tomonaga-Luttinger liquid. The low temperature properties are governed by a gapped relaxation due to a spin gap (~ 30K), which crosses over smoothly to the Luttinger liquid behaviour with increasing temperature.
98 - R. Egger 1999
The low-energy theory for multi-wall carbon nanotubes including the long-ranged Coulomb interactions, internal screening effects, and single-electron hopping between graphite shells is derived and analyzed by bosonization methods. Characteristic Lutt inger liquid power laws are found for the tunneling density of states, with exponents approaching their Fermi liquid value only very slowly as the number of conducting shells increases. With minor modifications, the same conclusions apply to transport in ropes of single-wall nanotubes.
We investigate the effect of electron-phonon coupling on low temperature phases in metallic single-wall carbon nanotubes. We obtain low-temperature phase diagrams of armchair and zigzag type nanotubes with screened interactions with a weak-coupling r enormalization group approach. In the absence of electron-phonon coupling, two types of nanotubes have similar phase diagrams. A $D$-Mott phase or $d$-wave superconductivity appears when the on-site interaction is dominant, while a charge-density wave or an excitonic insulator phase emerges when the nearest neighbor interaction becomes comparable to the on-site interaction. The electron-phonon coupling, treated by a two-cutoff scaling scheme, leads to different behavior in two types of nanotubes. For strong electron-phonon interactions, phonon softening is induced and a Peierls insulator phase appears in armchair nanotubes. We find that this softening of phonons may occur for any intraband scattering phonon mode. On the other hand, the effect of electron-phonon coupling is negligible for zigzag nanotubes. The distinct behavior of armchair and zigzag nanotubes against lattice distortion is explained by analysis of the renormalization group equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا