ﻻ يوجد ملخص باللغة العربية
We investigate the effect of electron-phonon coupling on low temperature phases in metallic single-wall carbon nanotubes. We obtain low-temperature phase diagrams of armchair and zigzag type nanotubes with screened interactions with a weak-coupling renormalization group approach. In the absence of electron-phonon coupling, two types of nanotubes have similar phase diagrams. A $D$-Mott phase or $d$-wave superconductivity appears when the on-site interaction is dominant, while a charge-density wave or an excitonic insulator phase emerges when the nearest neighbor interaction becomes comparable to the on-site interaction. The electron-phonon coupling, treated by a two-cutoff scaling scheme, leads to different behavior in two types of nanotubes. For strong electron-phonon interactions, phonon softening is induced and a Peierls insulator phase appears in armchair nanotubes. We find that this softening of phonons may occur for any intraband scattering phonon mode. On the other hand, the effect of electron-phonon coupling is negligible for zigzag nanotubes. The distinct behavior of armchair and zigzag nanotubes against lattice distortion is explained by analysis of the renormalization group equations.
Degeneracy of discrete energy levels of finite-length, metallic single-wall carbon nanotubes depends on type of nanotubes, boundary condition, length of nanotubes and spin-orbit interaction. Metal-1 nanotubes, in which two non-equivalent valleys in t
The hybrid orbitals of single-wall carbon nanotubes are given according to the structure of the nanotube. Because the energy levels of these hybrid orbitals are close to each other, the sigma-orbitals will affect the behavior of the pi-electrons, whi
A comprehensive theory of electron spin resonance (ESR) for a Luttinger liquid (LL) state of correlated metals is presented. The ESR measurables such as the signal intensity and the line-width are calculated in the framework of Luttinger liquid theor
The electronic states in isolated single-wall carbon nanotubes (SWCNTs) have been considered as an ideal realization of a Tomonaga-Luttinger liquid (TLL). However, it remains unclear whether one-dimensional correlated states are realized under local
We report the existence of broad and weakly asymmetric features in the high-energy (G) Raman modes of freely suspended metallic carbon nanotubes of defined chiral index. A significant variation in peak width (from 12 cm-1 to 110 cm-1) is observed as