ﻻ يوجد ملخص باللغة العربية
A comprehensive theory of electron spin resonance (ESR) for a Luttinger liquid (LL) state of correlated metals is presented. The ESR measurables such as the signal intensity and the line-width are calculated in the framework of Luttinger liquid theory with broken spin rotational symmetry as a function of magnetic field and temperature. We obtain a significant temperature dependent homogeneous line-broadening which is related to the spin symmetry breaking and the electron-electron interaction. The result crosses over smoothly to the ESR of itinerant electrons in the non-interacting limit. These findings explain the absence of the long-sought ESR signal of itinerant electrons in single-wall carbon nanotubes when considering realistic experimental conditions.
Recent transport measurements [Churchill textit{et al.} Nat. Phys. textbf{5}, 321 (2009)] found a surprisingly large, 2-3 orders of magnitude larger than usual $^{13}$C hyperfine coupling (HFC) in $^{13}$C enriched single-wall carbon nanotubes (SWCNT
The low-energy theory for multi-wall carbon nanotubes including the long-ranged Coulomb interactions, internal screening effects, and single-electron hopping between graphite shells is derived and analyzed by bosonization methods. Characteristic Lutt
Transport properties of metallic single-wall nanotubes are examined based on the Luttinger liquid theory. Focusing on a nanotube transistor setup, the linear conductance is computed from the Kubo formula using perturbation theory in the lead-tube tun
The hybrid orbitals of single-wall carbon nanotubes are given according to the structure of the nanotube. Because the energy levels of these hybrid orbitals are close to each other, the sigma-orbitals will affect the behavior of the pi-electrons, whi
We investigate the effect of electron-phonon coupling on low temperature phases in metallic single-wall carbon nanotubes. We obtain low-temperature phase diagrams of armchair and zigzag type nanotubes with screened interactions with a weak-coupling r