ترغب بنشر مسار تعليمي؟ اضغط هنا

Toric varieties, monoid schemes and $cdh$ descent

173   0   0.0 ( 0 )
 نشر من قبل Christian Haesemeyer
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We give conditions for the Mayer-Vietoris property to hold for the algebraic K-theory of blow-up squares of toric varieties in any characteristic, using the theory of monoid schemes. These conditions are used to relate algebraic K-theory to topological cyclic homology in characteristic p. To achieve our goals, we develop for monoid schemes many notions from classical algebraic geometry, such as separated and proper maps.



قيم البحث

اقرأ أيضاً

124 - Marc Hoyois 2016
We construct geometric models for classifying spaces of linear algebraic groups in G-equivariant motivic homotopy theory, where G is a tame group scheme. As a consequence, we show that the equivariant motivic spectrum representing the homotopy K-theo ry of G-schemes (which we construct as an E-infinity-ring) is stable under arbitrary base change, and we deduce that homotopy K-theory of G-schemes satisfies cdh descent.
368 - Adeel A. Khan 2018
We construct a semi-orthogonal decomposition on the category of perfect complexes on the blow-up of a derived Artin stack in a quasi-smooth centre. This gives a generalization of Thomasons blow-up formula in algebraic K-theory to derived stacks. We a lso provide a new criterion for descent in Voevodskys cdh topology, which we use to give a direct proof of Cisinskis theorem that Weibels homotopy invariant K-theory satisfies cdh descent.
We study the algebraic $K$-theory and Grothendieck-Witt theory of proto-exact categories of vector bundles over monoid schemes. Our main results are the complete description of the algebraic $K$-theory space of an integral monoid scheme $X$ in terms of its Picard group $operatorname{Pic}(X)$ and pointed monoid of regular functions $Gamma(X, mathcal{O}_X)$ and a description of the Grothendieck-Witt space of $X$ in terms of an additional involution on $operatorname{Pic}(X)$. We also prove space-level projective bundle formulae in both settings.
We show that if X is a toric scheme over a regular ring containing a field then the direct limit of the K-groups of X taken over any infinite sequence of nontrivial dilations is homotopy invariant. This theorem was known in characteristic 0. The affi ne case of our result was conjectured by Gubeladze.
64 - Eduardo Cattani , David Cox , 1995
We study residues on a complete toric variety X, which are defined in terms of the homogeneous coordinate ring of X. We first prove a global transformation law for toric residues. When the fan of the toric variety has a simplicial cone of maximal dim ension, we can produce an element with toric residue equal to 1. We also show that in certain situations, the toric residue is an isomorphism on an appropriate graded piece of the quotient ring. When X is simplicial, we prove that the toric residue is a sum of local residues. In the case of equal degrees, we also show how to represent X as a quotient (Y-{0})/C* such that the toric residue becomes the local residue at 0 in Y.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا