ﻻ يوجد ملخص باللغة العربية
We construct geometric models for classifying spaces of linear algebraic groups in G-equivariant motivic homotopy theory, where G is a tame group scheme. As a consequence, we show that the equivariant motivic spectrum representing the homotopy K-theory of G-schemes (which we construct as an E-infinity-ring) is stable under arbitrary base change, and we deduce that homotopy K-theory of G-schemes satisfies cdh descent.
We construct a semi-orthogonal decomposition on the category of perfect complexes on the blow-up of a derived Artin stack in a quasi-smooth centre. This gives a generalization of Thomasons blow-up formula in algebraic K-theory to derived stacks. We a
We give conditions for the Mayer-Vietoris property to hold for the algebraic K-theory of blow-up squares of toric varieties in any characteristic, using the theory of monoid schemes. These conditions are used to relate algebraic K-theory to topologic
Over any field of characteristic not 2, we establish a 2-term resolution of the $eta$-periodic, 2-local motivic sphere spectrum by shifts of the connective 2-local Witt K-theory spectrum. This is curiously similar to the resolution of the K(1)-local
Recall that the definition of the $K$-theory of an object C (e.g., a ring or a space) has the following pattern. One first associates to the object C a category A_C that has a suitable structure (exact, Waldhausen, symmetric monoidal, ...). One then
We show that if X is a toric scheme over a regular ring containing a field then the direct limit of the K-groups of X taken over any infinite sequence of nontrivial dilations is homotopy invariant. This theorem was known in characteristic 0. The affi