ترغب بنشر مسار تعليمي؟ اضغط هنا

Residues in Toric Varieties

65   0   0.0 ( 0 )
 نشر من قبل David Cox
 تاريخ النشر 1995
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study residues on a complete toric variety X, which are defined in terms of the homogeneous coordinate ring of X. We first prove a global transformation law for toric residues. When the fan of the toric variety has a simplicial cone of maximal dimension, we can produce an element with toric residue equal to 1. We also show that in certain situations, the toric residue is an isomorphism on an appropriate graded piece of the quotient ring. When X is simplicial, we prove that the toric residue is a sum of local residues. In the case of equal degrees, we also show how to represent X as a quotient (Y-{0})/C* such that the toric residue becomes the local residue at 0 in Y.


قيم البحث

اقرأ أيضاً

We give conditions for the Mayer-Vietoris property to hold for the algebraic K-theory of blow-up squares of toric varieties in any characteristic, using the theory of monoid schemes. These conditions are used to relate algebraic K-theory to topologic al cyclic homology in characteristic p. To achieve our goals, we develop for monoid schemes many notions from classical algebraic geometry, such as separated and proper maps.
We show that if X is a toric scheme over a regular ring containing a field then the direct limit of the K-groups of X taken over any infinite sequence of nontrivial dilations is homotopy invariant. This theorem was known in characteristic 0. The affi ne case of our result was conjectured by Gubeladze.
Let $I_M$ and $I_N$ be defining ideals of toric varieties such that $I_M$ is a projection of $I_N$, i.e. $I_N subseteq I_M$. We give necessary and sufficient conditions for the equality $I_M=rad(I_N+(f_1,...,f_s))$, where $f_1,...,f_s$ belong to $I_M $. Also a method for finding toric varieties which are set-theoretic complete intersection is given. Finally we apply our method in the computation of the arithmetical rank of certain toric varieties and provide the defining equations of the above toric varieties.
We study the proalgebraic space which is the inverse limit of all finite branched covers over a normal toric variety $X$ with branching set the invariant divisor under the action of $(mathbb{C}^*)^n$. This is the proalgebraic toric-completion $X_{mat hbb{Q}}$ of $X$. The ramification over the invariant divisor and the singular invariant divisors of $X$ impose topological constraints on the automorphisms of $X_{mathbb{Q}}$. Considering this proalgebraic space as the toric functor on the adelic complex plane multiplicative semigroup, we calculate its automorphic group. Moreover we show that its vector bundle category is the direct limit of the respective categories of the finite toric varieties coverings defining the proalgebraic toric-completion.
We explicate the combinatorial/geometric ingredients of Arthurs proof of the convergence and polynomiality, in a truncation parameter, of his non-invariant trace formula. Starting with a fan in a real, finite dimensional, vector space and a collectio n of functions, one for each cone in the fan, we introduce a combinatorial truncated function with respect to a polytope normal to the fan and prove the analogues of Arthurs results on the convergence and polynomiality of the integral of this truncated function over the vector space. The convergence statements clarify the important role of certain combinatorial subsets that appear in Arthurs work and provide a crucial partition that amounts to a so-called nearest face partition. The polynomiality statements can be thought of as far reaching extensions of the Ehrhart polynomial. Our proof of polynomiality relies on the Lawrence-Varchenko conical decomposition and readily implies an extension of the well-known combinatorial lemma of Langlands. The Khovanskii-Pukhlikov virtual polytopes are an important ingredient here. Finally, we give some geometric interpretations of our combinatorial truncation on toric varieties as a measure and a Lefschetz number.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا