ﻻ يوجد ملخص باللغة العربية
We study residues on a complete toric variety X, which are defined in terms of the homogeneous coordinate ring of X. We first prove a global transformation law for toric residues. When the fan of the toric variety has a simplicial cone of maximal dimension, we can produce an element with toric residue equal to 1. We also show that in certain situations, the toric residue is an isomorphism on an appropriate graded piece of the quotient ring. When X is simplicial, we prove that the toric residue is a sum of local residues. In the case of equal degrees, we also show how to represent X as a quotient (Y-{0})/C* such that the toric residue becomes the local residue at 0 in Y.
We give conditions for the Mayer-Vietoris property to hold for the algebraic K-theory of blow-up squares of toric varieties in any characteristic, using the theory of monoid schemes. These conditions are used to relate algebraic K-theory to topologic
We show that if X is a toric scheme over a regular ring containing a field then the direct limit of the K-groups of X taken over any infinite sequence of nontrivial dilations is homotopy invariant. This theorem was known in characteristic 0. The affi
Let $I_M$ and $I_N$ be defining ideals of toric varieties such that $I_M$ is a projection of $I_N$, i.e. $I_N subseteq I_M$. We give necessary and sufficient conditions for the equality $I_M=rad(I_N+(f_1,...,f_s))$, where $f_1,...,f_s$ belong to $I_M
We study the proalgebraic space which is the inverse limit of all finite branched covers over a normal toric variety $X$ with branching set the invariant divisor under the action of $(mathbb{C}^*)^n$. This is the proalgebraic toric-completion $X_{mat
We explicate the combinatorial/geometric ingredients of Arthurs proof of the convergence and polynomiality, in a truncation parameter, of his non-invariant trace formula. Starting with a fan in a real, finite dimensional, vector space and a collectio