ﻻ يوجد ملخص باللغة العربية
We analyze the effect of a dissipative bosonic environment on the Landau-Zener-Stuckelberg-Majorana (LZSM) level crossing model by using a microscopic approach to derive the relevant master equation. For an environment at zero temperature and weak dissipation our microscopic approach confirms the independence of the survival probability on the decay rate that has been predicted earlier by the simple phenomenological LZSM model. For strong decay the microscopic approach predicts a notable increase of the survival probability, which signals dynamical decoupling of the initial state. Unlike the phenomenological model our approach makes it possible to study the dependence of the system dynamics on the temperature of the environment. In the limit of very high temperature we find that the dynamics is characterized by a very strong dynamical decoupling of the initial state - temperature-induced quantum Zeno effect.
The Landau-Zener formula provides an analytical expression for the final excitation of a quantum system after passage of an avoided crossing of two energy levels. If the two levels correspond to a ground state, and to an excited state which is subjec
By example of the nonlinear Kerr-mode driven by a laser, we show that hysteresis phenomena in systems featuring a driven-dissipative phase transition (DPT) can be accurately described in terms of just two collective, dissipative Liouvillian eigenmode
This paper is a continuation of a previous work about the study of the survival probability modelizing the molecular predissociation in the Born-Oppenheimer framework. Here we consider the critical case where the reference energy corresponds to the v
The geometric (Berry) phase of a two-level system in a dissipative environment is analyzed by using the second-quantized formulation, which provides a unified and gauge-invariant treatment of adiabatic and nonadiabatic phases and is thus applicable t
We extend non-Hermitian topological quantum walks on a Su-Schrieffer-Heeger (SSH) lattice [M. S. Rudner and L. Levitov, Phys. Rev. Lett. 102, 065703 (2009)] to the case of non-Markovian evolution. This non-Markovian model is established by coupling e