ﻻ يوجد ملخص باللغة العربية
The Landau-Zener formula provides an analytical expression for the final excitation of a quantum system after passage of an avoided crossing of two energy levels. If the two levels correspond to a ground state, and to an excited state which is subject to radiative decay, the probability of exciting the system by adiabatic passage of the level crossing is reduced. In this article we use a stochastic master equation to study the level crossing dynamics when the system is subject to continuous probing of the emitted radiation. The measurement backaction on the system associated with the fluctuating homodyne detection record alters the level crossing dynamics, leading to significant excitation in spite of decay and imperfect transfer.
Two aspects of the classic two-level Landau--Zener (LZ) problem are considered. First, we address the LZ problem when one or both levels decay, i.e., $veps_j(t) to veps_j(t)-i Gamma_j/2$. We find that if the system evolves from an initial time $-T$ t
We analyze the effect of a dissipative bosonic environment on the Landau-Zener-Stuckelberg-Majorana (LZSM) level crossing model by using a microscopic approach to derive the relevant master equation. For an environment at zero temperature and weak di
We study Landau-Zener transitions in a fermionic dissipative environment where a two-level (up and down states) system is coupled to two metallic leads kept with different chemical potentials at zero temperature. The dynamics of the system is simulat
We present experimental results on the preparation of a desired quantum state in a two-level system with the maximum possible fidelity using driving protocols ranging from generalizations of the linear Landau-Zener protocol to transitionless driving
Tunneling two level systems (TLS), present in dielectrics at low temperatures, have been recently studied for fundamental understanding and superconducting device development. According to a recent theory by Burin textit{et al.}, the TLS bath of any