ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular dynamics at an energy-level crossing

73   0   0.0 ( 0 )
 نشر من قبل Andr\\'e Martinez
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper is a continuation of a previous work about the study of the survival probability modelizing the molecular predissociation in the Born-Oppenheimer framework. Here we consider the critical case where the reference energy corresponds to the value of a crossing of two electronic levels, one of these two levels being confining while the second dissociates. We show that the survival probability associated to a certain initial state is a sum of the usual time-dependent exponential contribution, and a reminder term that is jointly polynomially small with respect to the time and the semiclassical parameter. We also compute explicitly the main contribution of the remainder.



قيم البحث

اقرأ أيضاً

We study the existence and location of the resonances of a $2times 2$ semiclassical system of coupled Schrodinger operators, in the case where the two electronic levels cross at some point, and one of them is bonding, while the other one is anti-bond ing. Considering energy levels just above that of the crossing, we find the asymptotics of both the real parts and the imaginary parts of the resonances close to such energies. This is a continuation of our previous works where we considered energy levels around that of the crossing.
Whereas it is easy to reduce the translational symmetry of a molecular system by using, e.g., Jacobi coordinates the situation is much more involved for the rotational symmetry. In this paper we address the latter problem using {it holonomy reduction }. We suggest that the configuration space may be considered as the reduced holonomy bundle with a connection induced by the mechanical connection. Using the fact that for the special case of the three-body problem, the holonomy group is SO(2) (as opposed to SO(3) like in systems with more than three bodies) we obtain a holonomy reduced configuration space of topology $ mathbf{R}_+^3 times S^1$. The dynamics then takes place on the cotangent bundle over the holonomy reduced configuration space. On this phase space there is an $S^1$ symmetry action coming from the conserved reduced angular momentum which can be reduced using the standard symplectic reduction method. Using a theorem by Arnold it follows that the resulting symmetry reduced phase space is again a natural mechanical phase space, i.e. a cotangent bundle. This is different from what is obtained from the usual approach where symplectic reduction is used from the outset. This difference is discussed in some detail, and a connection between the reduced dynamics of a triatomic molecule and the motion of a charged particle in a magnetic field is established.
A family of discontinuous symplectic maps on the cylinder is considered. This family arises naturally in the study of nonsmooth Hamiltonian dynamics and in switched Hamiltonian systems. The transformation depends on two parameters and is a canonical model for the study of bounded and unbounded behavior in discontinuous area-preserving mappings due to nonlinear resonances. This paper provides a general description of the map and points out its connection with another map considered earlier by Kesten. In one special case, an unbounded orbit is explicitly constructed.
113 - Yi Qiao , Zhirong Xin , Kun Hao 2018
We investigate the thermodynamic limit of the one-dimensional ferromagnetic XXZ model with twisted (or antiperiodic ) boundary condition. It is shown that the distribution of the Bethe roots of the inhomogeneous Bethe Ansatz equations (BAEs) for the ground state as well as for the low-lying excited states satisfy the string hypothesis, although the inhomogeneous BAEs are not in the standard product form which has made the study of the corresponding thermodynamic limit nontrivial. We also obtain the twisted boundary energy induced by the non-trivial twisted boundary conditions in the thermodynamic limit.
We show that the local density of states (LDOS) of a wide class of tight-binding models has a weak body-order expansion. Specifically, we prove that the resulting body-order expansion for analytic observables such as the electron density or the energ y has an exponential rate of convergence both at finite Fermi-temperature as well as for insulators at zero Fermi-temperature. We discuss potential consequences of this observation for modelling the potential energy landscape, as well as for solving the electronic structure problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا