ﻻ يوجد ملخص باللغة العربية
Czochralski-grown silicon crystals were studied by the techniques of the low-angle mid-IR-light scattering and electron-beam-induced current. The large-scale accumulations of electrically-active impurities detected in this material were found to be different in their nature and formation mechanisms from the well-known impurity clouds in a FZ-grown silicon. A classification of the large-scale impurity accumulations in CZ Si is made and point centers constituting them are analyzed in this paper. A model of the large-scale impurity accumulations in CZ-grown Si is also proposed. In addition, the images of the large-scale impurity accumulations obtained by means of the scanning mid-IR-laser microscopy are demonstrated.
Electrically detected magnetic resonance is used to identify recombination centers in a set of Czochralski grown silicon samples processed to contain strained oxide precipitates with a wide range of densities (~ 1e9 cm-3 to ~ 7e10 cm-3). Measurements
We demonstrate an atomic force microscopy based method for estimation of defect density by identification of threading dislocations on a non-flat surface resulting from metamorphic growth. The discussed technique can be applied as an everyday evaluat
Silicon-based quantum bits with electron spins in quantum dots or nuclear spins on dopants are serious contenders in the race for quantum computation. Added to process integration maturity, the lack of nuclear spins in the most abundant $^{28}$silico
We develop a strategy for graphene growth on Ru(0001) followed by silicon-layer intercalation that not only weakens the interaction of graphene with the metal substrate but also retains its superlative properties. This G/Si/Ru architecture, produced
Topological insulator (TI) materials are exciting candidates for integration into next-generation memory and logic devices because of their potential for efficient, low-energy-consumption switching of magnetization. Specifically, the family of bismut