ترغب بنشر مسار تعليمي؟ اضغط هنا

Silicon Layer Intercalation of Centimeter-Scale, Epitaxially-Grown Monolayer Graphene on Ru(0001)

162   0   0.0 ( 0 )
 نشر من قبل Li Huang
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a strategy for graphene growth on Ru(0001) followed by silicon-layer intercalation that not only weakens the interaction of graphene with the metal substrate but also retains its superlative properties. This G/Si/Ru architecture, produced by silicon-layer intercalation approach (SIA), was characterized by scanning tunneling microscopy/spectroscopy and angle resolved electron photoemission spectroscopy. These experiments show high structural and electronic qualities of this new composite. The SIA allows for an atomic control of the distance between the graphene and the metal substrate that can be used as a top gate. Our results show potential for the next generation of graphene-based materials with tailored properties.



قيم البحث

اقرأ أيضاً

156 - Yande Que , Wende Xiao , Hui Chen 2017
The growth, atomic structure, and electronic property of trilayer graphene (TLG) on Ru(0001) were studied by low temperature scanning tunneling microscopy and spectroscopy in combined with tight-binding approximation (TBA) calculations. TLG on Ru(000 1) shows a flat surface with a hexagonal lattice due to the screening effect of the bottom two layers and the AB-stacking in the top two layers. The coexistence of AA- and AB-stacking in the bottom two layers leads to three different stacking orders of TLG, namely, ABA-, ABC-, and ABB-stacking. STS measurements combined with TBA calculations reveal that the density of states of TLG with ABC- and ABB-stacking is characterized by one and two sharp peaks near to the Fermi level, respectively, in contrast to the V-shaped feature of TLG with ABA-stacking. Our work demonstrates that TLG on Ru(0001) might be an ideal platform for exploring stacking-dependent electronic properties of graphene.
Two-dimensional (2D) ferromagnetic materials have been exhibiting promising potential in applications, such as spintronics devices. To grow epitaxial magnetic films on silicon substrate, in the single-layer limit, is practically important but challen ging. In this study, we realized the epitaxial growth of MnSn monolayer on Si(111) substrate, with an atomically thin Sn/Si(111)-$2sqrt{3}times2sqrt{3}$- buffer layer, and controlled the MnSn thickness with atomic-layer precision. We discovered the ferromagnetism in MnSn monolayer with the Curie temperature (Tc) of ~54 K. As the MnSn film is grown to 4 monolayers, Tc increases accordingly to ~235 K. The lattice of the epitaxial MnSn monolayer as well as the Sn/Si(111)-$2sqrt{3}times2sqrt{3}$ is perfectly compatible with silicon, and thus an sharp interface is formed between MnSn, Sn and Si. This system provides a new platform for exploring the 2D ferromagnetism, integrating magnetic monolayers into silicon-based technology, and engineering the spintronics heterostructures.
292 - Y. Pan , N. Jiang , J.T. Sun 2007
We demonstrate a method for synthesizing large scale single layer graphene by thermal annealing of ruthenium single crystal containing carbon. Low energy electron diffraction indicates the graphene grows to as large as millimeter dimensions with good long-range order, and scanning tunneling microscope shows perfect crystallinity. Analysis of Moire pattern augmented with first-principles calculations shows the graphene layer is incommensurate with the underlying Ru(0001) surface forming a N by N superlattice with an average lattice strain of ~ +0.81%. Our findings offer an effective method for producing high quality single crystalline graphene for fundamental research and large-scale graphene wafer for device fabrication and integration.
Graphene epitaxially grown on Ru(0001) displays a remarkably ordered pattern of hills and valleys in Scanning Tunneling Microscopy (STM) images. To which extent the observed ripples are structural or electronic in origin have been much disputed recen tly. A combination of ultrahigh resolution STM images and Helium Atom diffraction data shows that i) the graphene lattice is rotated with respect to the lattice of Ru and ii) the structural corrugation as determined from He diffraction is substantially smaller (0.015 nm) than predicted (0.15 nm) or reported from X-Ray Diffraction or Low Energy Electron Diffraction. The electronic corrugation, on the contrary, is strong enough to invert the contrast between hills and valleys above +2.6 V as new, spatially localized electronic states enter the energy window of the STM. The large electronic corrugation results in a nanostructured periodic landscape of electron and holes pockets.
212 - Thomas Brugger 2008
The electronic structure of a single layer graphene on Ru(0001) is compared with that of a single layer hexagonal boron nitride nanomesh on Ru(0001). Both are corrugated sp2 networks and display a pi-band gap at the K point of their 1 x 1 Brillouin z one. Graphene has a distinct Fermi surface which indicates that 0.1 electrons are transferred per 1 x 1 unit cell. Photoemission from adsorbed xenon identifies two distinct Xe 5p1/2 lines, separated by 240 meV, which reveals a corrugated electrostatic potential energy surface. These two Xe species are related to the topography of the system and have different desorption energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا