ﻻ يوجد ملخص باللغة العربية
A detailed study of reciprocity failure in four 1.7 micron cutoff HgCdTe near-infrared detectors is presented. The sensitivity to reciprocity failure is approximately 0.1%decade over up to five orders of magnitude in illumination intensity. The four detectors, which represent three successive production runs with modified growth recipes, show large differences in amount and spatial structure of reciprocity failure. Reciprocity failure could be reduced to negligible levels by cooling the detectors to about 110 K. No wavelength dependence was observed. The observed spatial structure appears to be weakly correlated with image persistence.
Flux dependent non-linearity (reciprocity failure) in HgCdTe NIR detectors with 1.7 micron cut-off was investigated. A dedicated test station was designed and built to measure reciprocity failure over the full dynamic range of near infrared detectors
Flux dependent non-linearity (reciprocity failure) in HgCdTe near infrared detectors can severely impact an instruments performance, in particular with respect to precision photometric measurements. The cause of this effect is presently not understoo
Solar contamination, due to moonlight and atmospheric scattering of sunlight, can cause systematic errors in stellar radial velocity (RV) measurements that significantly detract from the ~10cm/s sensitivity required for the detection and characteriza
This paper proposes a cascading failure mitigation strategy based on Reinforcement Learning (RL). The motivation of the Multi-Stage Cascading Failure (MSCF) problem and its connection with the challenge of climate change are introduced. The bottom-le
Teledynes H2RG detector images suffer from cross-hatch like patterns which arises from sub-pixel quantum efficiency (QE) variation. In this paper we present our measurements of this sub-pixel QE variation in the Habitable-Zone Planet Finders H2RG det