ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of crosshatch patterns in H2RGs on high precision radial velocity measurements: Exploration of measurement and mitigation paths with HPF

86   0   0.0 ( 0 )
 نشر من قبل Joe P. Ninan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Teledynes H2RG detector images suffer from cross-hatch like patterns which arises from sub-pixel quantum efficiency (QE) variation. In this paper we present our measurements of this sub-pixel QE variation in the Habitable-Zone Planet Finders H2RG detector. We present a simple model to estimate the impact of sub-pixel QE variations on the radial velocity, and how a first order correction can be implemented to correct for the artifact in the spectrum. We also present how the HPFs future upgraded laser frequency comb will enable us to implement this correction.



قيم البحث

اقرأ أيضاً

The Doppler method of exoplanet detection has been extremely successful, but suffers from contaminating noise from stellar activity. In this work a model of a rotating star with a magnetic field based on the geometry of the K2 star Epsilon Eridani is presented and used to estimate its effect on simulated radial velocity measurements. A number of different distributions of unresolved magnetic spots were simulated on top of the observed large-scale magnetic maps obtained from eight years of spectropolarimetric observations. The radial velocity signals due to the magnetic spots have amplitudes of up to 10 m s$^{-1}$, high enough to prevent the detection of planets under 20 Earth masses in temperate zones of solar type stars. We show that the radial velocity depends heavily on spot distribution. Our results emphasize that understanding stellar magnetic activity and spot distribution is crucial for detection of Earth analogues.
Solar contamination, due to moonlight and atmospheric scattering of sunlight, can cause systematic errors in stellar radial velocity (RV) measurements that significantly detract from the ~10cm/s sensitivity required for the detection and characteriza tion of terrestrial exoplanets in or near Habitable Zones of Sun-like stars. The addition of low-level spectral contamination at variable effective velocity offsets introduces systematic noise when measuring velocities using classical mask-based or template-based cross-correlation techniques. Here we present simulations estimating the range of RV measurement error induced by uncorrected scattered sunlight contamination. We explore potential correction techniques, using both simultaneous spectrometer sky fibers and broadband imaging via coherent fiber imaging bundles, that could reliably reduce this source of error to below the photon-noise limit of typical stellar observations. We discuss the limitations of these simulations, the underlying assumptions, and mitigation mechanisms. We also present and discuss the components designed and built into the NEID precision RV instrument for the WIYN 3.5m telescope, to serve as an ongoing resource for the community to explore and evaluate correction techniques. We emphasize that while bright time has been traditionally adequate for RV science, the goal of 10cm/s precision on the most interesting exoplanetary systems may necessitate access to darker skies for these next-generation instruments.
390 - F. Bouchy , R.F. Diaz , G. Hebrard 2012
High-precision spectrographs play a key role in exoplanet searches and Doppler asteroseismology using the radial velocity technique. The 1 m/s level of precision requires very high stability and uniformity of the illumination of the spectrograph. In fiber-fed spectrographs such as SOPHIE, the fiber-link scrambling properties are one of the main conditions for high precision. To significantly improve the radial velocity precision of the SOPHIE spectrograph, which was limited to 5-6 m/s, we implemented a piece of octagonal-section fiber in the fiber link. We present here the scientific validation of the upgrade of this instrument, demonstrating a real improvement. The upgraded instrument, renamed SOPHIE+, reaches radial velocity precision in the range of 1-2 m/s. It is now fully efficient for the detection of low-mass exoplanets down to 5-10 Earth mass and for the identification of acoustic modes down to a few tens of cm/s.
High-precision spectrographs play a key role in exoplanet searches using the radial velocity technique. But at the accuracy level of 1 m.s-1, required for super-Earth characterization, stability of fiber-fed spectrograph performance is crucial consid ering variable observing conditions such as seeing, guiding and centering errors and, telescope vignetting. In fiber-fed spectrographs such as HARPS or SOPHIE, the fiber link scrambling properties are one of the main issues. Both the stability of the fiber near-field uniformity at the spectrograph entrance and of the far-field illumination on the echelle grating (pupil) are critical for high-precision radial velocity measurements due to the spectrograph geometrical field and aperture aberrations. We conducted tests on the SOPHIE spectrograph at the 1.93-m OHP telescope to measure the instrument sensitivity to the fiber link light feeding conditions: star decentering, telescope vignetting by the dome,and defocussing. To significantly improve on current precision, we designed a fiber link modification considering the spectrograph operational constraints. We have developed a new link which includes a piece of octagonal-section fiber, having good scrambling properties, lying inside the former circular-section fiber, and we tested the concept on a bench to characterize near-field and far-field scrambling properties. This modification has been implemented in spring 2011 on the SOPHIE spectrograph fibers and tested for the first time directly on the sky to demonstrate the gain compared to the previous fiber link. Scientific validation for exoplanet search and characterization has been conducted by observing standard stars.
133 - X. Yi , K. Vahala , S.Diddams 2015
We describe a successful effort to produce a laser comb around 1.55 $mu$m in the astronomical H band using a method based on a line-referenced, electro-optical-modulation frequency comb. We discuss the experimental setup, laboratory results, and proo f of concept demonstrations at the NASA Infrared Telescope Facility (IRTF) and the Keck-II telescope. The laser comb has a demonstrated stability of $<$ 200 kHz, corresponding to a Doppler precision of ~0.3 m/s. This technology, when coupled with a high spectral resolution spectrograph, offers the promise of $<$1 m/s radial velocity precision suitable for the detection of Earth-sized planets in the habitable zones of cool M-type stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا