ﻻ يوجد ملخص باللغة العربية
We give an example of a formula involving the sinc function that holds for every N = 0, 1, 2, ..., up to about 10^102832732165, then fails for all larger N. We give another example that begins to fail after about N ~ exp(exp(exp(exp(exp(exp(e)))))). This number is larger than the Skewes numbers.
There are many uses for linear fitting; the context here is interpolation and denoising of data, as when you have calibration data and you want to fit a smooth, flexible function to those data. Or you want to fit a flexible function to de-trend a tim
Let $M$ be a positive integer and $qin (1, M+1]$. A $q$-expansion of a real number $x$ is a sequence $(c_i)=c_1c_2cdots$ with $c_iin {0,1,ldots, M}$ such that $x=sum_{i=1}^{infty}c_iq^{-i}$. In this paper we study the set $mathcal{U}_q^j$ consisting
By using computers to do experimental manipulations on Fourier series, we construct additional series with interesting properties. For example, we construct several series whose sums remain unchanged when the nth term is multiplied by sin(n)/n. One s
Do you want to know what an anti-chiece Latin square is? Or what a non-consecutive toroidal modular Latin square is? We invented a ton of new types of Latin squares, some inspired by existing Sudoku variations. We cant wait to introduce them to you a
We study some special features of $F_{24}$, the holomorphic $c=12$ superconformal field theory (SCFT) given by 24 chiral free fermions. We construct eight different Lie superalgebras of physical states of a chiral superstring compactified on $F_{24}$