ﻻ يوجد ملخص باللغة العربية
We study some special features of $F_{24}$, the holomorphic $c=12$ superconformal field theory (SCFT) given by 24 chiral free fermions. We construct eight different Lie superalgebras of physical states of a chiral superstring compactified on $F_{24}$, and we prove that they all have the structure of Borcherds-Kac-Moody superalgebras. This produces a family of new examples of such superalgebras. The models depend on the choice of an $mathcal{N}=1$ supercurrent on $F_{24}$, with the admissible choices labeled by the semisimple Lie algebras of dimension 24. We also discuss how $F_{24}$, with any such choice of supercurrent, can be obtained via orbifolding from another distinguished $c=12$ holomorphic SCFT, the $mathcal{N}=1$ supersymmetric version of the chiral CFT based on the $E_8$ lattice.
We construct a Borcherds Kac-Moody (BKM) superalgebra on which the Conway group Co$_0$ acts faithfully. We show that the BKM algebra is generated by the BRST-closed states in a chiral superstring theory. We use this construction to produce denominato
We discuss a set of heterotic and type II string theory compactifications to 1+1 dimensions that are characterized by factorized internal worldsheet CFTs of the form $V_1otimes bar V_2$, where $V_1, V_2$ are self-dual (super) vertex operator algebras
We show that the four-dimensional Chern-Simons theory studied by Costello, Witten and Yamazaki, is, with Nahm pole-type boundary conditions, dual to a boundary theory that is a three-dimensional analogue of Toda theory with a novel 3d W-algebra symme
To celebrate Roman Jackiws 80th birthday, herewith some comments on gravity and gauge theory models in D=3, the chief focus of many of our joint efforts.
We prove a non-existence theorem for smooth AdS5 solutions with connected, compact without boundary internal space that preserve strictly 24 supersymmetries. In particular, we show that D=11 supergravity does not admit such solutions, and that all su