ﻻ يوجد ملخص باللغة العربية
Do you want to know what an anti-chiece Latin square is? Or what a non-consecutive toroidal modular Latin square is? We invented a ton of new types of Latin squares, some inspired by existing Sudoku variations. We cant wait to introduce them to you and answer important questions, such as: do they even exist? If so, under what conditions? What are some of their interesting properties? And how do we generate them?
A magic SET square is a 3 by 3 table of SET cards such that each row, column, diagonal, and anti-diagonal is a set. We allow the following transformations of the square: shuffling features, shuffling values within the features, rotations and reflecti
We prove a conjecture by Garbe et al. [arXiv:2010.07854] by showing that a Latin square is quasirandom if and only if the density of every 2x3 pattern is 1/720+o(1). This result is the best possible in the sense that 2x3 cannot be replaced with 2x2 or 1xN for any N.
We develop a limit theory of Latin squares, paralleling the recent limit theories of dense graphs and permutations. We introduce a notion of density, an appropriate version of the cut distance, and a space of limit objects - so-called Latinons. Key r
This note tries to show that a re-examination of a first course in analysis, using the more sophisticated tools and approaches obtained in later stages, can be a real fun for experts, advanced students, etc. We start by going to the extreme, namely w
A Latin square has six conjugate Latin squares obtained by uniformly permuting its (row, column, symbol) triples. We say that a Latin square has conjugate symmetry if at least two of its six conjugates are equal. We enumerate Latin squares with conju